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Universal Gröbner basis

S a polynomial ring over a field K , ≺ a term order in S
I ⊂ S homogeneous ideal,

Initial ideal of I : in≺(I ) = (in≺(f ) : f ∈ I )
g1, . . . , gr ∈ I

Definition

I {g1, . . . , gr} is a Gröbner basis of I wrt ≺ if

in≺(I ) = (in≺(g1), . . . , in≺(gr ))

I {g1, . . . , gr} is a universal Gröbner basis of I if it is a Gröbner
basis of I with respect to any term order on S , that is

in≺(I ) = (in≺(g1), . . . , in≺(gr )) wrt every ≺
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Generic Determinantal Rings
K a field, X = (xij) an m × n matrix of indeterminates.

S = K [xij : 1 ≤ i ≤ j ≤ n]

Given 1 ≤ r1 < · · · < rt ≤ m, 1 ≤ c1 < · · · < ct ≤ n:

t-minor: [r1, . . . , rt |c1, . . . , ct ]X = det(xricj )i ,j=1,...,t

Determinantal ring: S/It(X ) with It(X ) = ( t-minors of X )

Variants: generic symmetric matrix, generic skew-symmetric matrix
(and ideals of pfaffians), generic Hankel matrices
They appear in various contexts, e.g.

I classical invariant theory,

I t = 2: defining ideal of the Segre/Veronese/Grassmannian
variety,

I higher t: secant varieties of Segre/Veronese/Grassmannian
variety.
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Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of It(X ) w.r.t. diagonal term order.
Tools: KRS correspondence and standard monomial theory.

2. in(It(X )) is associated to a shellable simplicial complex.
Tools: results of Björner on multiple chains complexes
associated to planar distributive lattices.

I S/It(X ) is Cohen Macaulay

I Its Hilbert Series can be described combinatorially.

Similar results for skew-symmetric, symmetric, Hankel matrices,
powers and product of determinantal ideals
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Universal GB for minors, t = 2

Theorem (Sturmfels, Villareal)

Universal GB of I2(X ) is the set of all the binomials associated to
the cycles of the complete bipartite graph Km,n

All the initial ideals of I2(X ) are radical and define CM rings (indeed
they are associated to a shellable simplicial complex )
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Universal GB for maximal minors

X = (xij) generic matrix of size m × n, m ≤ n.

a minor of size m is called maximal minor: [c1, . . . , cm]X

Im(X ) = ( maximal minors of X )

Bernstein-Sturmfels-Zelevinsky (1993-94)

The m-minors of X form a universal GB of Im(X )

Boocher (2011)

For every term order ≺:

I βij(Im(X )) = βij(in≺(Im(X )))

I in particular in≺(Im(X )) has a linear resolution
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Universal GB for maximal minors

Our first contribution: both results are consequence of a
degeneration argument

M f.g. graded S-module

Hilbert series of M: HS(M, y) =
∑

i∈Z(dimK Mi )y
i

Lemma

Let M,T be f.g. graded S-modules and let J = (z1, . . . , zs) ⊂ S be
a homogeneous ideal. Suppose that:

(1) HS(T , y) ≥ HS(M, y) coefficentwise.

(2) HS(T/JT , y) = HS(M/JM, y)

(3) z1, . . . , zs is M-regular sequence.

Then HS(T , y) = HS(M, y) and z1, . . . , zs is a T -regular sequence.



Universal GB for maximal minors

Our first contribution: both results are consequence of a
degeneration argument

M f.g. graded S-module

Hilbert series of M: HS(M, y) =
∑

i∈Z(dimK Mi )y
i

Lemma

Let M,T be f.g. graded S-modules and let J = (z1, . . . , zs) ⊂ S be
a homogeneous ideal. Suppose that:

(1) HS(T , y) ≥ HS(M, y) coefficentwise.

(2) HS(T/JT , y) = HS(M/JM, y)

(3) z1, . . . , zs is M-regular sequence.

Then HS(T , y) = HS(M, y) and z1, . . . , zs is a T -regular sequence.



Universal GB for maximal minors

Our first contribution: both results are consequence of a
degeneration argument

M f.g. graded S-module

Hilbert series of M: HS(M, y) =
∑

i∈Z(dimK Mi )y
i

Lemma

Let M,T be f.g. graded S-modules and let J = (z1, . . . , zs) ⊂ S be
a homogeneous ideal. Suppose that:

(1) HS(T , y) ≥ HS(M, y) coefficentwise.

(2) HS(T/JT , y) = HS(M/JM, y)

(3) z1, . . . , zs is M-regular sequence.

Then HS(T , y) = HS(M, y) and z1, . . . , zs is a T -regular sequence.



Universal GB for maximal minors: “short proof”

Fix ≺ any term order on S .
D = (in≺([c1, . . . , cm]X ) : 1 ≤ c1 < . . . cm ≤ n) ⊆ in≺(Im(X ))

Pick A = (aij) ∈ Mmn(K ∗) such that all max minors are 6= 0 and
new variables y1, . . . , yn.
Mapping xij to aijyj , we get a K -algebra map

Φ : S = K [xij ] −→ K [y ] = K [y1, . . . , yn]

I Φ([c1, . . . , cm]X ) = yc1 · · · ycm [c1, . . . , cm]A
I m monomial of [c1, . . . , cm]X ⇒ Φ(m) = αyc1 · · · ycm , α ∈ K ∗

Φ(Im(X )) = (yc1 · · · ycm : 1 ≤ c1 < c2 < · · · < cm ≤ n) = Φ(D)
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Universal GB for maximal minors: “short proof”

D = (in≺([c1, . . . , cm]X ) : 1 ≤ c1 < · · · < cm ≤ n) ⊆ in≺(Im(X ))

Apply the Lemma with data

M = S/Im(X ), T = S/D, J = KerΦ

(1) D ⊆ in≺(Im(X )) =⇒ HS(T , y) ≥ HS(M, y)

(2) Φ(Im(X )) = Φ(D) =⇒ HS(M/JM, y) = HS(T/JT , y)

(3) dimM − dimM/JM = the number of generators of
J =⇒ J is generated by M-regular sequence

⇒ HS(S/D, y) = HS(S/Im(X ), y) ⇒ D = in≺(Im(X ))

J gen. by M and T -reg. seq. ⇒ βij(Im(X )) = βij(in≺(Im(X )))
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M = S/Im(X ), T = S/D, J = KerΦ

(1) D ⊆ in≺(Im(X )) =⇒ HS(T , y) ≥ HS(M, y)

(2) Φ(Im(X )) = Φ(D) =⇒ HS(M/JM, y) = HS(T/JT , y)

(3) dimM − dimM/JM = the number of generators of
J =⇒ J is generated by M-regular sequence

⇒ HS(S/D, y) = HS(S/Im(X ), y) ⇒ D = in≺(Im(X ))

J gen. by M and T -reg. seq. ⇒ βij(Im(X )) = βij(in≺(Im(X )))



Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if
one replaces some of the entries of X with 0’s.

Question

Is it possible to prove similar results for matrices of linear forms?

Let L = (Lij) an m × n matrix, m ≤ n, with Lij ∈ R1.

Eagon-Northcott

height(Im(L)) ≤ height(Im(X )) = n −m + 1
If = holds, then the Eagon-Northcott complex is a minimal free
resolution of Im(L)
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What can go wrong

Example 1

L =

(
0 x1 x2 x3
x1 x2 0 x4

)
m = 2, n = 4, height(I2(L)) = 2 < 3

R/I2(L) not koszul =⇒ I2(L) has no GB of quadrics
(not even after a change of coordinates)

Example 2

L =

(
x1 + x2 x3 x3

0 x1 x2

)
m = 2, n = 3, height(I2(L)) = 2

in≺(I2(L)) has a generator in degree 3 for every ≺ ( if char(K ) 6= 2)
=⇒ I2(L) has no GB of quadrics
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What can go wrong

Example 3

L =

(
x1 x4 x3
x5 x1 + x6 x2

)
The entries of L are linearly independent over K
(i.e., L arises from a matrix of variables by a change of coordinates)

For the most ≺ the 2-minors are a GB of I2(L).

But in≺(I2(L)) has a generator in degree 3 for every ≺ with
x1 � x2 � · · · � x6

=⇒ the 2-minors are not a UGB
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Our generalizations

Matrices of linear forms that are either column or row graded

Column-graded

deg xij = ej ∈ Zn.

L = (Lij) with deg Lij = ej , that is, Lij =
∑m

k=1 λijkxkj , λijk ∈ K .

Example: L =

(
x11 0 x13 − 2x23 −x24
0 x12 + x22 x23 −x24

)
Row-graded

deg xij = ei ∈ Zm.

L = (Lij) with deg Lij = ei , that is, Lij =
∑m

k=1 λijkxik , λijk ∈ K .

Example: L =

(
x11 x11 + x12 x11 − x12 x14
0 x21 x21 + 4x24 x24

)
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Column-graded

Theorem 1 (Conca, Gorla, -)

Assume L = (Lij) column-graded. Then:

(a) the maximal minors of L form a universal GB of Im(L).

(b) Im(L) is radical and has a linear resolution.

(c) in≺(Im(L)) is radical and has a linear resolution for every ≺.
In particular, βij(Im(L)) = βij(in≺(Im(L))) for all i , j .

(d) projdim Im(L) = projdim in≺(Im(L)) = n −m ... unless
Im(L) = 0 or a column of L is identically 0.

Remarks :

I the generators of Im(L) have all distinct multidegrees

I If height(Im(L)) = n −m + 1, Theorem 1 can be proved with
arguments similar to the ones used for Im(X )
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Row-graded

Main difference with the column-graded case:
all the minors are in the same multidegree −→ we cannot expect
that the maximal minors are a universal GB since they might have
all the same initial term.

Example

Consider K [x1, . . . , x6] multigraded by
deg(x1) = deg(x3) = deg(x5) = (1, 0)
deg(x2) = deg(x4) = deg(x6) = (0, 1).

L =

(
x1 2x1 + x3 −x1 + x5
x2 x2 + x4 x2 + x6

)
The 2 minors of L have all degree (1, 1).

If x1 � x2 � . . . � x6, then in≺(f ) = x1x2 for every 2-minor f
Thus the minors cannot be a universal GB!
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Row-graded

Theorem 2 (Conca, Gorla, -)

Assume L = (Lij) row-graded and height(Im(L)) = n −m + 1.
Then:

(a) There is a universal GB of elements of (total) degree m.

(b) Im(L) is radical

(c) in≺(Im(L)) is radical and has a linear resolution for every ≺.
In particular, βij(Im(L)) = βij(in≺(Im(L))) for all i , j .

Remarks :

I Experiments show that perhaps the assumption on the height
is superfluous

I Main tool of the proof of Theorems 1 and 2: a rigidity
property of multigraded generic initial ideals
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Generic initial ideal

Theorem/Definition

GLn(K ) acts by linear substitution on R = K [x1, . . . , xn].
For g ∈ GLn(K ) and I ⊂ R consider g(I )

Fix a term order. As g varies in GLn(K ) compute in(g(I ))

For almost all g one gets the same outcome → gin(I )

Properties:

I gin(I ) is Borel fixed, that is, fixed by the upper triangular
matrices in GLn(K )

I HS(I , y) = HS(gin(I ), y)
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Multigraded generic initial ideal
R = K [xij : i = 1, . . . ,m and j = 1 . . . , ni ] multi graded by
deg(xij) = ei ∈ Zm for all j = 1, . . . , ni .

Definition

G = GLn1(K ) × · · · × GLnm(K ) acts by linear substitution on R
preserving the multigraded structure.
g ∈ G, I ⊂ R multigraded ideal → g(I ) (multigraded)

Fix a term order
As g varies in G compute in(g(I ))

For almost all g one gets the same outcome → multigin(I )

Properties:

I multigin(I ) is Borel fixed, that is, fixed by the upper
triangular block matrices in G

I HS(I , y) = HS(multigin(I ), y)
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Borel-fixed ideals
U = {(b1, . . . , bm) ∈ Nm : bi ≤ ni for every i = 1, . . . ,m}.

Prime Borel-fixed ideals

I For every b ∈ U: Pb = (xij : i = 1, . . . ,m and 1 ≤ j ≤ bi ) is
prime and Borel fixed

I Every prime Borel fixed ideal is of this form

I I Borel fixed =⇒ assoc. prime ideals of I are Borel fixed

Radical Borel-fixed ideals

I radical Borel fixed, Min(I ) = {Pb1 , . . . ,Pbc}.

I I is the Alexander dual of the polarization of

J = (
∏
bij>0

x
bij
j : i = 1, . . . , c) ⊂ K [x1, . . . , xm]

I gens of I of the same multidegree =⇒ I has a linear res.
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Radical Borel-fixed ideals

Theorem

Let I , J multi graded Borel-fixed ideals with HS(I , y) = HS(J, y).

If I is radical then I = J

Corollary

Let I be Borel-fixed and radical. J such that HS(I , y) = HS(J, y).
Then multigin(J) = I .

In particular,

(a) J is radical

(b) I has a linear resolution =⇒ J has a linear resolution

(c) R/I is Cohen-Macaulay =⇒ R/J is Cohen-Macaulay

To prove Theorems 1-2:
have a guess for multigin(Im(L)) → call it I .
apply corollary with J = Im(L) and with J = in(Im(L))
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Proof of Theorem 1 - 2

Fix any term order with (wlg):
x1j � xij if i > 1 (Thm 1) or xij � xik if k > j (Thm 2)

Let I = (x1c1x1c2 · · · x1cm : [c1, . . . , cm]L 6= 0) (Thm 1)
and I = (x1c1x2c2 · · · xmcm : c1 + · · ·+ cm ≤ n) (Thm 2)

Properties of I

I it is radical and Borel fixed (easy)

I it is the ideal of the Alexander dual of a CM simplicial
complex (different in case 1 and 2) ⇒ it has a linear resolution

Moreover:

HS(I , y) = HS(Im(L), y)

= HS(in≺(Im(L)), y) for every ≺

(Hard and different in case 1 and 2)
Combinatorial tools: manipulation of power series expansions
involving symmetric polynomials
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By the Corollary:

I I = multigin(Im(L)) = multigin(in≺(Im(L))) for every ≺
I Im(L), in≺(Im(L)) are radical and have a linear resolution

⇒ βij(Im(L)) = βij(in≺(Im(L)))

⇒ Im(L) has a GB of elements of degree m.

Theorem 1:
(in≺([c1, . . . , cn]L : [c1, . . . , cn]L 6= 0) ⊆ in≺(Im(L))
and deg(in≺([c1, . . . , cn]L) = ec1 + · · ·+ ecn all distinct

⇒ “=” holds.
Projective dimension: I is the Alexander dual of a complex related
to a matroid, whose regularity is known
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Thanks for the attention!


