Universal Gröbner bases for maximal minors

Emanuela De Negri
Università di Genova

Joint with Aldo Conca (Genova), Elisa Gorla (Neuchatel)
to appear in International Mathematics Research Notices

Universal Gröbner basis

S a polynomial ring over a field $K, \quad \prec$ a term order in S
$I \subset S$ homogeneous ideal,

Universal Gröbner basis

S a polynomial ring over a field $K, \quad \prec$ a term order in S $I \subset S$ homogeneous ideal,

Initial ideal of $I: \operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}(f): f \in I\right)$

Universal Gröbner basis

S a polynomial ring over a field $K, \quad \prec$ a term order in S
$I \subset S$ homogeneous ideal,
Initial ideal of $I: \operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}(f): f \in I\right)$ $g_{1}, \ldots, g_{r} \in I$

Definition

- $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of I wrt \prec if

$$
\operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}\left(g_{1}\right), \ldots, \operatorname{in}_{\prec}\left(g_{r}\right)\right)
$$

Universal Gröbner basis

S a polynomial ring over a field $K, \quad \prec$ a term order in S
$I \subset S$ homogeneous ideal,
Initial ideal of $I: \operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}(f): f \in I\right)$ $g_{1}, \ldots, g_{r} \in I$

Definition

- $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of I wrt \prec if

$$
\operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}\left(g_{1}\right), \ldots, \operatorname{in}_{\prec}\left(g_{r}\right)\right)
$$

- $\left\{g_{1}, \ldots, g_{r}\right\}$ is a universal Gröbner basis of I if it is a Gröbner basis of I with respect to any term order on S, that is

$$
\operatorname{in}_{\prec}(I)=\left(\operatorname{in}_{\prec}\left(g_{1}\right), \ldots, \operatorname{in}_{\prec}\left(g_{r}\right)\right) \text { wrt every } \prec
$$

Generic Determinantal Rings

K a field, $X=\left(x_{i j}\right)$ an $m \times n$ matrix of indeterminates.
$S=K\left[x_{i j}: 1 \leq i \leq j \leq n\right]$

Generic Determinantal Rings

K a field, $\quad X=\left(x_{i j}\right)$ an $m \times n$ matrix of indeterminates.
$S=K\left[x_{i j}: 1 \leq i \leq j \leq n\right]$
Given $1 \leq r_{1}<\cdots<r_{t} \leq m, \quad 1 \leq c_{1}<\cdots<c_{t} \leq n:$
t-minor: $\left[r_{1}, \ldots, r_{t} \mid c_{1}, \ldots, c_{t}\right]_{X}=\operatorname{det}\left(x_{r_{i} c_{j}}\right)_{i, j=1, \ldots, t}$

Generic Determinantal Rings

K a field, $\quad X=\left(x_{i j}\right)$ an $m \times n$ matrix of indeterminates.
$S=K\left[x_{i j}: 1 \leq i \leq j \leq n\right]$
Given $1 \leq r_{1}<\cdots<r_{t} \leq m, \quad 1 \leq c_{1}<\cdots<c_{t} \leq n:$
t-minor: $\left[r_{1}, \ldots, r_{t} \mid c_{1}, \ldots, c_{t}\right]_{X}=\operatorname{det}\left(x_{r_{i} c_{j}}\right)_{i, j=1, \ldots, t}$
Determinantal ring: $S / I_{t}(X)$ with $I_{t}(X)=(t$-minors of $X)$

Generic Determinantal Rings

K a field, $\quad X=\left(x_{i j}\right)$ an $m \times n$ matrix of indeterminates.
$S=K\left[x_{i j}: 1 \leq i \leq j \leq n\right]$
Given $1 \leq r_{1}<\cdots<r_{t} \leq m, \quad 1 \leq c_{1}<\cdots<c_{t} \leq n:$
t-minor: $\left[r_{1}, \ldots, r_{t} \mid c_{1}, \ldots, c_{t}\right]_{X}=\operatorname{det}\left(x_{r_{i} c_{j}}\right)_{i, j=1, \ldots, t}$
Determinantal ring: $S / I_{t}(X)$ with $I_{t}(X)=(t$-minors of $X)$

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices

Generic Determinantal Rings

K a field, $\quad X=\left(x_{i j}\right)$ an $m \times n$ matrix of indeterminates.
$S=K\left[x_{i j}: 1 \leq i \leq j \leq n\right]$
Given $1 \leq r_{1}<\cdots<r_{t} \leq m, \quad 1 \leq c_{1}<\cdots<c_{t} \leq n:$
t-minor: $\left[r_{1}, \ldots, r_{t} \mid c_{1}, \ldots, c_{t}\right]_{X}=\operatorname{det}\left(x_{r_{i} c_{j}}\right)_{i, j=1, \ldots, t}$
Determinantal ring: $S / I_{t}(X)$ with $I_{t}(X)=(t$-minors of $X)$

Variants: generic symmetric matrix, generic skew-symmetric matrix (and ideals of pfaffians), generic Hankel matrices
They appear in various contexts, e.g.

- classical invariant theory,
- $t=2$: defining ideal of the Segre/Veronese/Grassmannian variety,
- higher t : secant varieties of Segre/Veronese/Grassmannian variety.

Gröbner bases and determinantal rings of minors

Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of $I_{t}(X)$ w.r.t. diagonal term order. Tools: KRS correspondence and standard monomial theory.

Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of $I_{t}(X)$ w.r.t. diagonal term order. Tools: KRS correspondence and standard monomial theory.
2. in $\left(I_{t}(X)\right)$ is associated to a shellable simplicial complex. Tools: results of Björner on multiple chains complexes associated to planar distributive lattices.

Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of $I_{t}(X)$ w.r.t. diagonal term order. Tools: KRS correspondence and standard monomial theory.
2. in $\left(I_{t}(X)\right)$ is associated to a shellable simplicial complex. Tools: results of Björner on multiple chains complexes associated to planar distributive lattices.

- $S / I_{t}(X)$ is Cohen Macaulay

Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of $I_{t}(X)$ w.r.t. diagonal term order. Tools: KRS correspondence and standard monomial theory.
2. in $\left(I_{t}(X)\right)$ is associated to a shellable simplicial complex. Tools: results of Björner on multiple chains complexes associated to planar distributive lattices.

- $S / I_{t}(X)$ is Cohen Macaulay
- Its Hilbert Series can be described combinatorially.

Gröbner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of $I_{t}(X)$ w.r.t. diagonal term order. Tools: KRS correspondence and standard monomial theory.
2. in $\left(I_{t}(X)\right)$ is associated to a shellable simplicial complex. Tools: results of Björner on multiple chains complexes associated to planar distributive lattices.

- $S / I_{t}(X)$ is Cohen Macaulay
- Its Hilbert Series can be described combinatorially.

Similar results for skew-symmetric, symmetric, Hankel matrices, powers and product of determinantal ideals

Universal GB for minors, $t=2$

Theorem (Sturmfels, Villareal)
Universal GB of $I_{2}(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m, n}$

Universal GB for minors, $t=2$

Theorem (Sturmfels, Villareal)

Universal GB of $I_{2}(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m, n}$

Example:

Universal GB for minors, $t=2$

Theorem (Sturmfels, Villareal)

Universal GB of $I_{2}(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m, n}$

Example:

Universal GB for minors, $t=2$

Theorem (Sturmfels, Villareal)

Universal GB of $I_{2}(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m, n}$

Example:

Universal GB for minors, $t=2$

Theorem (Sturmfels, Villareal)

Universal GB of $I_{2}(X)$ is the set of all the binomials associated to the cycles of the complete bipartite graph $K_{m, n}$

All the initial ideals of $I_{2}(X)$ are radical and define CM rings (indeed they are associated to a shellable simplicial complex)

Example:

Universal GB for maximal minors

$X=\left(x_{i j}\right)$ generic matrix of size $m \times n, m \leq n$.
a minor of size m is called maximal minor: $\left[c_{1}, \ldots, c_{m}\right]_{X}$
$I_{m}(X)=($ maximal minors of $X)$

Universal GB for maximal minors

$X=\left(x_{i j}\right)$ generic matrix of size $m \times n, m \leq n$.
a minor of size m is called maximal minor: $\left[c_{1}, \ldots, c_{m}\right]_{X}$
$I_{m}(X)=($ maximal minors of $X)$

Bernstein-Sturmfels-Zelevinsky (1993-94)
The m-minors of X form a universal GB of $I_{m}(X)$

Universal GB for maximal minors

$X=\left(x_{i j}\right)$ generic matrix of size $m \times n, m \leq n$.
a minor of size m is called maximal minor: $\left[c_{1}, \ldots, c_{m}\right]_{X}$
$I_{m}(X)=($ maximal minors of $X)$

Bernstein-Sturmfels-Zelevinsky (1993-94)

The m-minors of X form a universal GB of $I_{m}(X)$

Boocher (2011)

For every term order \prec :

- $\beta_{i j}\left(I_{m}(X)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(X)\right)\right)$
- in particular $\mathrm{in}_{\prec}\left(I_{m}(X)\right)$ has a linear resolution

Universal GB for maximal minors

Our first contribution: both results are consequence of a degeneration argument

Universal GB for maximal minors

Our first contribution: both results are consequence of a degeneration argument
M f.g. graded S-module
Hilbert series of $M: \operatorname{HS}(M, y)=\sum_{i \in \mathbb{Z}}\left(\operatorname{dim}_{K} M_{i}\right) y^{i}$

Universal GB for maximal minors

Our first contribution: both results are consequence of a degeneration argument
M f.g. graded S-module
Hilbert series of $M: \operatorname{HS}(M, y)=\sum_{i \in \mathbb{Z}}\left(\operatorname{dim}_{K} M_{i}\right) y^{i}$

Lemma

Let M, T be f.g. graded S-modules and let $J=\left(z_{1}, \ldots, z_{s}\right) \subset S$ be a homogeneous ideal. Suppose that:
(1) $\operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$ coefficentwise.
(2) $\operatorname{HS}(T / J T, y)=\operatorname{HS}(M / J M, y)$
(3) z_{1}, \ldots, z_{s} is M-regular sequence.

Then $\operatorname{HS}(T, y)=\operatorname{HS}(M, y)$ and z_{1}, \ldots, z_{s} is a T-regular sequence.

Universal GB for maximal minors: "short proof"

Fix \prec any term order on S.
$D=\left(\mathrm{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$

Universal GB for maximal minors: "short proof"

Fix \prec any term order on S.
$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Pick $A=\left(a_{i j}\right) \in M_{m n}\left(K^{*}\right)$ such that all max minors are $\neq 0$ and new variables y_{1}, \ldots, y_{n}.

Universal GB for maximal minors:"short proof"

Fix \prec any term order on S.
$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Pick $A=\left(a_{i j}\right) \in M_{m n}\left(K^{*}\right)$ such that all max minors are $\neq 0$ and new variables y_{1}, \ldots, y_{n}.
Mapping $x_{i j}$ to $a_{i j} y_{j}$, we get a K-algebra map

$$
\Phi: S=K\left[x_{i j}\right] \longrightarrow K[y]=K\left[y_{1}, \ldots, y_{n}\right]
$$

Universal GB for maximal minors: "short proof"

Fix \prec any term order on S.
$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Pick $A=\left(a_{i j}\right) \in M_{m n}\left(K^{*}\right)$ such that all max minors are $\neq 0$ and new variables y_{1}, \ldots, y_{n}.
Mapping $x_{i j}$ to $a_{i j} y_{j}$, we get a K-algebra map

$$
\Phi: S=K\left[x_{i j}\right] \longrightarrow K[y]=K\left[y_{1}, \ldots, y_{n}\right]
$$

- $\Phi\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right)=y_{c_{1}} \cdots y_{c_{m}}\left[c_{1}, \ldots, c_{m}\right]_{A}$
- m monomial of $\left[c_{1}, \ldots, c_{m}\right]_{X} \Rightarrow \Phi(m)=\alpha y_{c_{1}} \cdots y_{c_{m}}, \alpha \in K^{*}$

Universal GB for maximal minors: "short proof"

Fix \prec any term order on S.
$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Pick $A=\left(a_{i j}\right) \in M_{m n}\left(K^{*}\right)$ such that all max minors are $\neq 0$ and new variables y_{1}, \ldots, y_{n}.
Mapping $x_{i j}$ to $a_{i j} y_{j}$, we get a K-algebra map

$$
\Phi: S=K\left[x_{i j}\right] \longrightarrow K[y]=K\left[y_{1}, \ldots, y_{n}\right]
$$

- $\Phi\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right)=y_{c_{1}} \cdots y_{c_{m}}\left[c_{1}, \ldots, c_{m}\right]_{A}$
- m monomial of $\left[c_{1}, \ldots, c_{m}\right]_{X} \Rightarrow \Phi(m)=\alpha y_{c_{1}} \cdots y_{c_{m}}, \alpha \in K^{*}$ $\Phi\left(I_{m}(X)\right)=\left(y_{c_{1}} \cdots y_{c_{m}}: 1 \leq c_{1}<c_{2}<\cdots<c_{m} \leq n\right)$

Universal GB for maximal minors: "short proof"

Fix \prec any term order on S.
$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\ldots c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Pick $A=\left(a_{i j}\right) \in M_{m n}\left(K^{*}\right)$ such that all max minors are $\neq 0$ and new variables y_{1}, \ldots, y_{n}.
Mapping $x_{i j}$ to $a_{i j} y_{j}$, we get a K-algebra map

$$
\Phi: S=K\left[x_{i j}\right] \longrightarrow K[y]=K\left[y_{1}, \ldots, y_{n}\right]
$$

- $\Phi\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right)=y_{c_{1}} \cdots y_{c_{m}}\left[c_{1}, \ldots, c_{m}\right]_{A}$
- m monomial of $\left[c_{1}, \ldots, c_{m}\right]_{x} \Rightarrow \Phi(m)=\alpha y_{c_{1}} \cdots y_{c_{m}}, \alpha \in K^{*}$ $\Phi\left(I_{m}(X)\right)=\left(y_{c_{1}} \cdots y_{c_{m}}: 1 \leq c_{1}<c_{2}<\cdots<c_{m} \leq n\right)=\Phi(D)$

Universal GB for maximal minors: "short proof"

$$
D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)
$$

Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

Universal GB for maximal minors: "short proof"

$$
D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right]_{X}\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)
$$

Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$

Universal GB for maximal minors: "short proof"

$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right] X\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$
(2) $\Phi\left(I_{m}(X)\right)=\Phi(D) \Longrightarrow \operatorname{HS}(M / J M, y)=\operatorname{HS}(T / J T, y)$

Universal GB for maximal minors: "short proof"

$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right] X\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$
(2) $\Phi\left(I_{m}(X)\right)=\Phi(D) \Longrightarrow \operatorname{HS}(M / J M, y)=\operatorname{HS}(T / J T, y)$
(3) $\operatorname{dim} M-\operatorname{dim} M / J M=$ the number of generators of $J \Longrightarrow J$ is generated by M-regular sequence

Universal GB for maximal minors: "short proof"

$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right] X\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$
(2) $\Phi\left(I_{m}(X)\right)=\Phi(D) \Longrightarrow \operatorname{HS}(M / J M, y)=\operatorname{HS}(T / J T, y)$
(3) $\operatorname{dim} M-\operatorname{dim} M / J M=$ the number of generators of $J \Longrightarrow J$ is generated by M-regular sequence
$\Rightarrow \operatorname{HS}(S / D, y)=\operatorname{HS}\left(S / I_{m}(X), y\right)$

Universal GB for maximal minors: "short proof"

$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right] X\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$
(2) $\Phi\left(I_{m}(X)\right)=\Phi(D) \Longrightarrow \operatorname{HS}(M / J M, y)=\operatorname{HS}(T / J T, y)$
(3) $\operatorname{dim} M-\operatorname{dim} M / J M=$ the number of generators of $J \Longrightarrow J$ is generated by M-regular sequence
$\Rightarrow \operatorname{HS}(S / D, y)=\operatorname{HS}\left(S / I_{m}(X), y\right) \Rightarrow D=\operatorname{in}_{\prec}\left(I_{m}(X)\right)$

Universal GB for maximal minors: "short proof"

$D=\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{m}\right] X\right): 1 \leq c_{1}<\cdots<c_{m} \leq n\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right)$
Apply the Lemma with data

$$
M=S / I_{m}(X), \quad T=S / D, \quad J=\operatorname{Ker} \Phi
$$

(1) $D \subseteq \operatorname{in}_{\prec}\left(I_{m}(X)\right) \Longrightarrow \operatorname{HS}(T, y) \geq \operatorname{HS}(M, y)$
(2) $\Phi\left(I_{m}(X)\right)=\Phi(D) \Longrightarrow \operatorname{HS}(M / J M, y)=\operatorname{HS}(T / J T, y)$
(3) $\operatorname{dim} M-\operatorname{dim} M / J M=$ the number of generators of $J \Longrightarrow J$ is generated by M-regular sequence

$$
\Rightarrow \operatorname{HS}(S / D, y)=\operatorname{HS}\left(S / I_{m}(X), y\right) \Rightarrow D=\operatorname{in}_{\prec}\left(I_{m}(X)\right)
$$

J gen. by M and T-reg. seq. $\Rightarrow \beta_{i j}\left(I_{m}(X)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(X)\right)\right)$

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0 's.

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0 's.

Question

Is it possible to prove similar results for matrices of linear forms?

Generalizations?

Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if one replaces some of the entries of X with 0 's.

Question

Is it possible to prove similar results for matrices of linear forms?

Let $L=\left(L_{i j}\right)$ an $m \times n$ matrix, $m \leq n$, with $L_{i j} \in R_{1}$.

Eagon-Northcott

height $\left(I_{m}(L)\right) \leq \operatorname{height}\left(I_{m}(X)\right)=n-m+1$
If $=$ holds, then the Eagon-Northcott complex is a minimal free resolution of $I_{m}(L)$

What can go wrong

Example 1

$L=\left(\begin{array}{cccc}0 & x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & 0 & x_{4}\end{array}\right) \quad m=2, n=4, \operatorname{height}\left(l_{2}(L)\right)=2<3$
$R / I_{2}(L)$ not koszul $\Longrightarrow I_{2}(L)$ has no $G B$ of quadrics (not even after a change of coordinates)

What can go wrong

Example 1

$L=\left(\begin{array}{cccc}0 & x_{1} & x_{2} & x_{3} \\ x_{1} & x_{2} & 0 & x_{4}\end{array}\right) \quad m=2, n=4, \operatorname{height}\left(I_{2}(L)\right)=2<3$
$R / I_{2}(L)$ not koszul $\Longrightarrow I_{2}(L)$ has no GB of quadrics (not even after a change of coordinates)

Example 2

$$
L=\left(\begin{array}{ccc}
x_{1}+x_{2} & x_{3} & x_{3} \\
0 & x_{1} & x_{2}
\end{array}\right) \quad m=2, n=3, \operatorname{height}\left(I_{2}(L)\right)=2
$$

$\mathrm{in}_{\prec}\left(I_{2}(L)\right)$ has a generator in degree 3 for every $\prec($ if $\operatorname{char}(K) \neq 2)$
$\Longrightarrow I_{2}(L)$ has no GB of quadrics

What can go wrong

Example 3

$$
L=\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{3} \\
x_{5} & x_{1}+x_{6} & x_{2}
\end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

What can go wrong

Example 3

$$
L=\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{3} \\
x_{5} & x_{1}+x_{6} & x_{2}
\end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

For the most \prec the 2 -minors are a GB of $I_{2}(L)$.

What can go wrong

Example 3

$$
L=\left(\begin{array}{ccc}
x_{1} & x_{4} & x_{3} \\
x_{5} & x_{1}+x_{6} & x_{2}
\end{array}\right)
$$

The entries of L are linearly independent over K (i.e., L arises from a matrix of variables by a change of coordinates)

For the most \prec the 2 -minors are a GB of $I_{2}(L)$.
But in $\prec_{\prec}\left(I_{2}(L)\right)$ has a generator in degree 3 for every \prec with $x_{1} \succ x_{2} \succ \cdots \succ x_{6}$
\Longrightarrow the 2-minors are not a UGB

Our generalizations

Matrices of linear forms that are either column or row graded

Our generalizations

Matrices of linear forms that are either column or row graded
Column-graded
$\operatorname{deg} x_{i j}=e_{j} \in \mathbb{Z}^{n}$.
$L=\left(L_{i j}\right)$ with $\operatorname{deg} L_{i j}=e_{j}$, that is, $L_{i j}=\sum_{k=1}^{m} \lambda_{i j k} x_{k j}, \lambda_{i j k} \in K$.

$$
\text { Example: } \quad L=\left(\begin{array}{cccc}
x_{11} & 0 & x_{13}-2 x_{23} & -x_{24} \\
0 & x_{12}+x_{22} & x_{23} & -x_{24}
\end{array}\right)
$$

Our generalizations

Matrices of linear forms that are either column or row graded

Column-graded

$\operatorname{deg} x_{i j}=e_{j} \in \mathbb{Z}^{n}$.
$L=\left(L_{i j}\right)$ with $\operatorname{deg} L_{i j}=e_{j}$, that is, $L_{i j}=\sum_{k=1}^{m} \lambda_{i j k} x_{k j}, \lambda_{i j k} \in K$. Example: $\quad L=\left(\begin{array}{cccc}x_{11} & 0 & x_{13}-2 x_{23} & -x_{24} \\ 0 & x_{12}+x_{22} & x_{23} & -x_{24}\end{array}\right)$

Row-graded
$\operatorname{deg} x_{i j}=e_{i} \in \mathbb{Z}^{m}$.
$L=\left(L_{i j}\right)$ with $\operatorname{deg} L_{i j}=e_{i}$, that is, $L_{i j}=\sum_{k=1}^{m} \lambda_{i j k} x_{i k}, \lambda_{i j k} \in K$.
Example: $\quad L=\left(\begin{array}{cccc}x_{11} & x_{11}+x_{12} & x_{11}-x_{12} & x_{14} \\ 0 & x_{21} & x_{21}+4 x_{24} & x_{24}\end{array}\right)$

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.
(b) $I_{m}(L)$ is radical and has a linear resolution.

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.
(b) $I_{m}(L)$ is radical and has a linear resolution.
(c) $\mathrm{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec. In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.
(b) $I_{m}(L)$ is radical and has a linear resolution.
(c) in $_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.
(d) projdim $I_{m}(L)=\operatorname{projdimin}_{\prec}\left(I_{m}(L)\right)=n-m$

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.
(b) $I_{m}(L)$ is radical and has a linear resolution.
(c) $\mathrm{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.
(d) projdim $I_{m}(L)=\operatorname{projdimin}_{\prec}\left(I_{m}(L)\right)=n-m \quad \ldots$ unless $I_{m}(L)=0$ or a column of L is identically 0 .

Column-graded

Theorem 1 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ column-graded. Then:
(a) the maximal minors of L form a universal GB of $I_{m}(L)$.
(b) $I_{m}(L)$ is radical and has a linear resolution.
(c) $\operatorname{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.
(d) projdim $I_{m}(L)=\operatorname{projdimin}_{\prec}\left(I_{m}(L)\right)=n-m \quad \ldots$ unless $I_{m}(L)=0$ or a column of L is identically 0 .

Remarks :

- the generators of $I_{m}(L)$ have all distinct multidegrees
- If height $\left(I_{m}(L)\right)=n-m+1$, Theorem 1 can be proved with arguments similar to the ones used for $I_{m}(X)$

Row-graded

Main difference with the column-graded case:
all the minors are in the same multidegree \longrightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

Row-graded

Main difference with the column-graded case:
all the minors are in the same multidegree \longrightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

Example

Consider $K\left[x_{1}, \ldots, x_{6}\right]$ multigraded by

$$
\begin{aligned}
& \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{5}\right)=(1,0) \\
& \operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{4}\right)=\operatorname{deg}\left(x_{6}\right)=(0,1)
\end{aligned}
$$

$$
L=\left(\begin{array}{ccc}
x_{1} & 2 x_{1}+x_{3} & -x_{1}+x_{5} \\
x_{2} & x_{2}+x_{4} & x_{2}+x_{6}
\end{array}\right)
$$

The 2 minors of L have all degree $(1,1)$.

Row-graded

Main difference with the column-graded case: all the minors are in the same multidegree \longrightarrow we cannot expect that the maximal minors are a universal GB since they might have all the same initial term.

Example

Consider $K\left[x_{1}, \ldots, x_{6}\right]$ multigraded by

$$
\begin{aligned}
& \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{5}\right)=(1,0) \\
& \operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{4}\right)=\operatorname{deg}\left(x_{6}\right)=(0,1) .
\end{aligned}
$$

$$
L=\left(\begin{array}{ccc}
x_{1} & 2 x_{1}+x_{3} & -x_{1}+x_{5} \\
x_{2} & x_{2}+x_{4} & x_{2}+x_{6}
\end{array}\right)
$$

The 2 minors of L have all degree $(1,1)$.
If $x_{1} \succ x_{2} \succ \ldots \succ x_{6}$, then $\operatorname{in}_{\prec}(f)=x_{1} x_{2}$ for every 2-minor f
Thus the minors cannot be a universal GB!

Row-graded

Theorem 2 (Conca, Gorla, -)
Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:

Row-graded

Theorem 2 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:
(a) There is a universal GB of elements of (total) degree m.

Row-graded

Theorem 2 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:
(a) There is a universal GB of elements of (total) degree m.
(b) $I_{m}(L)$ is radical

Row-graded

Theorem 2 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:
(a) There is a universal GB of elements of (total) degree m.
(b) $I_{m}(L)$ is radical
(c) $\mathrm{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.

Row-graded

Theorem 2 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:
(a) There is a universal GB of elements of (total) degree m.
(b) $I_{m}(L)$ is radical
(c) $\mathrm{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.

Remarks:

- Experiments show that perhaps the assumption on the height is superfluous

Row-graded

Theorem 2 (Conca, Gorla, -)

Assume $L=\left(L_{i j}\right)$ row-graded and height $\left(I_{m}(L)\right)=n-m+1$. Then:
(a) There is a universal GB of elements of (total) degree m.
(b) $I_{m}(L)$ is radical
(c) $\operatorname{in}_{\prec}\left(I_{m}(L)\right)$ is radical and has a linear resolution for every \prec.

In particular, $\beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$ for all i, j.

Remarks:

- Experiments show that perhaps the assumption on the height is superfluous
- Main tool of the proof of Theorems 1 and 2: a rigidity property of multigraded generic initial ideals

Generic initial ideal

Theorem/Definition

$\mathrm{GL}_{n}(K)$ acts by linear substitution on $R=K\left[x_{1}, \ldots, x_{n}\right]$. For $g \in \mathrm{GL}_{n}(K)$ and $I \subset R$ consider $g(I)$

Generic initial ideal

Theorem/Definition

$\mathrm{GL}_{n}(K)$ acts by linear substitution on $R=K\left[x_{1}, \ldots, x_{n}\right]$.
For $g \in \mathrm{GL}_{n}(K)$ and $I \subset R$ consider $g(I)$
Fix a term order. As g varies in $\mathrm{GL}_{n}(K)$ compute in $(g(I))$

Generic initial ideal

Theorem/Definition

$\mathrm{GL}_{n}(K)$ acts by linear substitution on $R=K\left[x_{1}, \ldots, x_{n}\right]$.
For $g \in \mathrm{GL}_{n}(K)$ and $I \subset R$ consider $g(I)$
Fix a term order. As g varies in $\mathrm{GL}_{n}(K)$ compute in $(g(I))$
For almost all g one gets the same outcome $\rightarrow \operatorname{gin}(I)$

Generic initial ideal

Theorem/Definition

$\mathrm{GL}_{n}(K)$ acts by linear substitution on $R=K\left[x_{1}, \ldots, x_{n}\right]$.
For $g \in \mathrm{GL}_{n}(K)$ and $I \subset R$ consider $g(I)$
Fix a term order. As g varies in $\mathrm{GL}_{n}(K)$ compute in $(g(I))$
For almost all g one gets the same outcome $\rightarrow \operatorname{gin}(I)$

Properties:

- gin (I) is Borel fixed, that is, fixed by the upper triangular matrices in $\mathrm{GL}_{n}(K)$
- $\mathrm{HS}(I, y)=\mathrm{HS}(\operatorname{gin}(I), y)$

Multigraded generic initial ideal
$R=K\left[x_{i j}: i=1, \ldots, m\right.$ and $\left.j=1 \ldots, n_{i}\right]$ multi graded by $\operatorname{deg}\left(x_{i j}\right)=e_{i} \in \mathbb{Z}^{m}$ for all $j=1, \ldots, n_{i}$.

Multigraded generic initial ideal

$$
\begin{aligned}
& R=K\left[x_{i j}: i=1, \ldots, m \text { and } j=1 \ldots, n_{i}\right] \text { multi graded by } \\
& \operatorname{deg}\left(x_{i j}\right)=e_{i} \in \mathbb{Z}^{m} \text { for all } j=1, \ldots, n_{i} .
\end{aligned}
$$

(Multigraded) Hilbert series of a multi graded R-module M :

$$
\operatorname{HS}(M, y)=\operatorname{HS}\left(M, y_{1}, \ldots, y_{m}\right)=\sum_{a \in \mathbb{Z}^{m}}\left(\operatorname{dim} M_{a}\right) y^{a}
$$

Multigraded generic initial ideal

$R=K\left[x_{i j}: i=1, \ldots, m\right.$ and $\left.j=1 \ldots, n_{i}\right]$ multi graded by $\operatorname{deg}\left(x_{i j}\right)=e_{i} \in \mathbb{Z}^{m}$ for all $j=1, \ldots, n_{i}$.

Definition

$\mathrm{G}=\mathrm{GL}_{n_{1}}(K) \times \cdots \times \mathrm{GL}_{n_{m}}(K)$ acts by linear substitution on R preserving the multigraded structure.
$g \in \mathrm{G}, I \subset R$ multigraded ideal $\rightarrow g(I)$ (multigraded)
Fix a term order
As g varies in G compute in $(g(I))$

Multigraded generic initial ideal

$R=K\left[x_{i j}: i=1, \ldots, m\right.$ and $\left.j=1 \ldots, n_{i}\right]$ multi graded by $\operatorname{deg}\left(x_{i j}\right)=e_{i} \in \mathbb{Z}^{m}$ for all $j=1, \ldots, n_{i}$.

Definition

$\mathrm{G}=\mathrm{GL}_{n_{1}}(K) \times \cdots \times \mathrm{GL}_{n_{m}}(K)$ acts by linear substitution on R preserving the multigraded structure.
$g \in \mathrm{G}, I \subset R$ multigraded ideal $\rightarrow g(I)$ (multigraded)
Fix a term order
As g varies in G compute in $(g(I))$
For almost all g one gets the same outcome \rightarrow multigin (I)

Multigraded generic initial ideal

$R=K\left[x_{i j}: i=1, \ldots, m\right.$ and $\left.j=1 \ldots, n_{i}\right]$ multi graded by $\operatorname{deg}\left(x_{i j}\right)=e_{i} \in \mathbb{Z}^{m}$ for all $j=1, \ldots, n_{i}$.

Definition

$\mathrm{G}=\mathrm{GL}_{n_{1}}(K) \times \cdots \times \mathrm{GL}_{n_{m}}(K)$ acts by linear substitution on R preserving the multigraded structure.
$g \in \mathrm{G}, I \subset R$ multigraded ideal $\rightarrow g(I)$ (multigraded)
Fix a term order
As g varies in G compute in $(g(I))$
For almost all g one gets the same outcome \rightarrow multigin (I)

Properties:

- multigin (I) is Borel fixed, that is, fixed by the upper triangular block matrices in G
- $\mathrm{HS}(I, y)=\operatorname{HS}($ multigin $(I), y)$

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed
- Every prime Borel fixed ideal is of this form

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed
- Every prime Borel fixed ideal is of this form
- I Borel fixed \Longrightarrow assoc. prime ideals of I are Borel fixed

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed
- Every prime Borel fixed ideal is of this form
- I Borel fixed \Longrightarrow assoc. prime ideals of I are Borel fixed

Radical Borel-fixed ideals

I radical Borel fixed, $\operatorname{Min}(I)=\left\{P_{b_{1}}, \ldots, P_{b_{c}}\right\}$.

Borel-fixed ideals

$$
U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i} \text { for every } i=1, \ldots, m\right\}
$$

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed
- Every prime Borel fixed ideal is of this form
- I Borel fixed \Longrightarrow assoc. prime ideals of I are Borel fixed

Radical Borel-fixed ideals

I radical Borel fixed, $\operatorname{Min}(I)=\left\{P_{b_{1}}, \ldots, P_{b_{c}}\right\}$.

- I is the Alexander dual of the polarization of

$$
J=\left(\prod_{b_{i j}>0} x_{j}^{b_{j i}}: i=1, \ldots, c\right) \subset K\left[x_{1}, \ldots, x_{m}\right]
$$

Borel-fixed ideals

$U=\left\{\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}^{m}: b_{i} \leq n_{i}\right.$ for every $\left.i=1, \ldots, m\right\}$.

Prime Borel-fixed ideals

- For every $b \in U: P_{b}=\left(x_{i j}: i=1, \ldots, m\right.$ and $\left.1 \leq j \leq b_{i}\right)$ is prime and Borel fixed
- Every prime Borel fixed ideal is of this form
- I Borel fixed \Longrightarrow assoc. prime ideals of I are Borel fixed

Radical Borel-fixed ideals

I radical Borel fixed, $\operatorname{Min}(I)=\left\{P_{b_{1}}, \ldots, P_{b_{c}}\right\}$.

- I is the Alexander dual of the polarization of

$$
J=\left(\prod_{b_{i j}>0} x_{j}^{b_{j i}}: i=1, \ldots, c\right) \subset K\left[x_{1}, \ldots, x_{m}\right]
$$

- gens of I of the same multidegree $\Longrightarrow I$ has a linear res.

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.
If I is radical then $I=J$

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.
If I is radical then $I=J$

Idea of the proof:

- I Borel fixed $\Rightarrow \operatorname{Min}(I)$ are Borel fixed
- explicit description of prime Borel fixed ideals $\Rightarrow \mathrm{HS}(I, y)$ determines $\operatorname{Min}(I)$
- $\operatorname{Min}(I)=\operatorname{Min}(J), I$ radical $\Rightarrow J \subseteq I$
- = is forced by $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.
If I is radical then $I=J$

Corollary

Let I be Borel-fixed and radical. J such that $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$. Then multigin $(J)=I$.

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.
If I is radical then $I=J$

Corollary

Let I be Borel-fixed and radical. J such that $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$. Then multigin $(J)=I$. In particular,
(a) J is radical
(b) I has a linear resolution $\Longrightarrow J$ has a linear resolution
(c) R / I is Cohen-Macaulay $\Longrightarrow R / J$ is Cohen-Macaulay

Radical Borel-fixed ideals

Theorem

Let I, J multi graded Borel-fixed ideals with $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$.
If I is radical then $I=J$

Corollary

Let I be Borel-fixed and radical. J such that $\operatorname{HS}(I, y)=\operatorname{HS}(J, y)$. Then multigin $(J)=I$. In particular,
(a) J is radical
(b) I has a linear resolution $\Longrightarrow J$ has a linear resolution
(c) R / I is Cohen-Macaulay $\Longrightarrow R / J$ is Cohen-Macaulay

To prove Theorems 1-2:
have a guess for multigin $\left(I_{m}(L)\right) \rightarrow$ call it I. apply corollary with $J=I_{m}(L)$ and with $J=\operatorname{in}\left(I_{m}(L)\right)$

Proof of Theorem 1-2

Fix any term order with (wlg):
$x_{1 j} \succ x_{i j}$ if $i>1$ (Thm 1) or $x_{i j} \succ x_{i k}$ if $k>j$ (Thm 2)

Proof of Theorem 1-2

Fix any term order with (wlg):
$x_{1 j} \succ x_{i j}$ if $i>1$ (Thm 1) or $x_{i j} \succ x_{i k}$ if $k>j$ (Thm 2)
Let $I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right) \quad($ Thm 1)
and $I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots+c_{m} \leq n\right)($ Thm 2)

Proof of Theorem 1-2

Fix any term order with (wlg):
$x_{1 j} \succ x_{i j}$ if $i>1$ (Thm 1) or $x_{i j} \succ x_{i k}$ if $k>j$ (Thm 2)
Let $I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)($ Thm 1)
and $I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots+c_{m} \leq n\right)($ Thm 2)

Properties of I

- it is radical and Borel fixed (easy)
- it is the ideal of the Alexander dual of a CM simplicial complex (different in case 1 and 2) \Rightarrow it has a linear resolution

Proof of Theorem 1-2

Fix any term order with (wlg):
$x_{1 j} \succ x_{i j}$ if $i>1$ (Thm 1) or $x_{i j} \succ x_{i k}$ if $k>j$ (Thm 2)
Let $I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)($ Thm 1)
and $I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots+c_{m} \leq n\right)($ Thm 2)

Properties of I

- it is radical and Borel fixed (easy)
- it is the ideal of the Alexander dual of a CM simplicial complex (different in case 1 and 2) \Rightarrow it has a linear resolution

Moreover:

$$
\operatorname{HS}(I, y)=\operatorname{HS}\left(I_{m}(L), y\right)
$$

Proof of Theorem 1-2

Fix any term order with (wlg):
$x_{1 j} \succ x_{i j}$ if $i>1$ (Thm 1) or $x_{i j} \succ x_{i k}$ if $k>j$ (Thm 2)
Let $I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right) \quad($ Thm 1)
and $I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots+c_{m} \leq n\right)($ Thm 2)

Properties of I

- it is radical and Borel fixed (easy)
- it is the ideal of the Alexander dual of a CM simplicial complex (different in case 1 and 2) \Rightarrow it has a linear resolution

Moreover:

$$
\operatorname{HS}(I, y)=\operatorname{HS}\left(I_{m}(L), y\right)=\operatorname{HS}\left(\operatorname{in}_{\prec}\left(I_{m}(L)\right), y\right) \text { for every } \prec
$$

(Hard and different in case 1 and 2)
Combinatorial tools: manipulation of power series expansions involving symmetric polynomials

Proof of Theorem 1-2

$$
\begin{aligned}
& I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)(\text { Thm 1) } \\
& I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots c_{m} \leq n\right)(\text { Thm 2) }
\end{aligned}
$$

Proof of Theorem 1-2

$$
\begin{aligned}
& I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)(\text { Thm 1) } \\
& I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots c_{m} \leq n\right)(\text { Thm 2) }
\end{aligned}
$$

By the Corollary:

- $I=\operatorname{multigin}\left(I_{m}(L)\right)=\operatorname{multigin}\left(\operatorname{in}_{\prec}\left(I_{m}(L)\right)\right)$ for every \prec
- $I_{m}(L), \mathrm{in}_{\prec}\left(I_{m}(L)\right)$ are radical and have a linear resolution

Proof of Theorem 1-2

$$
\begin{aligned}
& I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)(\text { Thm 1) }) \\
& I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots c_{m} \leq n\right)(\text { Thm 2) }
\end{aligned}
$$

By the Corollary:

- $I=\operatorname{multigin}\left(I_{m}(L)\right)=\operatorname{multigin}\left(\operatorname{in}_{\prec}\left(I_{m}(L)\right)\right)$ for every \prec
- $I_{m}(L), \mathrm{in}_{\prec}\left(I_{m}(L)\right)$ are radical and have a linear resolution
$\Rightarrow \beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$
$\Rightarrow I_{m}(L)$ has a GB of elements of degree m.

Proof of Theorem 1-2

$I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)($ Thm 1)
$I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots c_{m} \leq n\right)($ Thm 2)
By the Corollary:

- $I=\operatorname{multigin}\left(I_{m}(L)\right)=\operatorname{multigin}\left(\operatorname{in}_{\prec}\left(I_{m}(L)\right)\right)$ for every \prec
- $I_{m}(L), \mathrm{in}_{\prec}\left(I_{m}(L)\right)$ are radical and have a linear resolution
$\Rightarrow \beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$
$\Rightarrow I_{m}(L)$ has a GB of elements of degree m.
Theorem 1:
$\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{n}\right]_{L}:\left[c_{1}, \ldots, c_{n}\right]_{L} \neq 0\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(L)\right)\right.$ and $\operatorname{deg}\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{n}\right]_{L}\right)=e_{c_{1}}+\cdots+e_{c_{n}}\right.$ all distinct \Rightarrow " $=$ " holds.

Proof of Theorem 1-2

$I=\left(x_{1 c_{1}} x_{1 c_{2}} \cdots x_{1 c_{m}}:\left[c_{1}, \ldots, c_{m}\right]_{L} \neq 0\right)($ Thm 1)
$I=\left(x_{1 c_{1}} x_{2 c_{2}} \cdots x_{m c_{m}}: c_{1}+\cdots c_{m} \leq n\right)($ Thm 2)
By the Corollary:

- $I=\operatorname{multigin}\left(I_{m}(L)\right)=\operatorname{multigin}\left(\operatorname{in}_{\prec}\left(I_{m}(L)\right)\right)$ for every \prec
- $I_{m}(L), \mathrm{in}_{\prec}\left(I_{m}(L)\right)$ are radical and have a linear resolution
$\Rightarrow \beta_{i j}\left(I_{m}(L)\right)=\beta_{i j}\left(\mathrm{in}_{\prec}\left(I_{m}(L)\right)\right)$
$\Rightarrow I_{m}(L)$ has a GB of elements of degree m.

Theorem 1:

$\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{n}\right]_{L}:\left[c_{1}, \ldots, c_{n}\right]_{L} \neq 0\right) \subseteq \operatorname{in}_{\prec}\left(I_{m}(L)\right)\right.$ and $\operatorname{deg}\left(\operatorname{in}_{\prec}\left(\left[c_{1}, \ldots, c_{n}\right]_{L}\right)=e_{c_{1}}+\cdots+e_{c_{n}}\right.$ all distinct \Rightarrow " $=$ " holds.
Projective dimension: I is the Alexander dual of a complex related to a matroid, whose regularity is known

Thanks for the attention!

