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S a polynomial ring over a field K, < a term order in §
| € S homogeneous ideal,

Initial ideal of /: in<(/) = (in<(f) : f € )

gi,--.,8 €1

Definition

» {g1,...,8} is a Grobner basis of [ wrt < if

in<(/) = (in<(g1)7 e 7in-<(gr))

» {g1,...,8} is a universal Grobner basis of / if it is a Grobner
basis of / with respect to any term order on S, that is

in<(/) = (in<(g1), .., in<(g)) wrt every <
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Generic Determinantal Rings
K a field, X = (x;) an m x n matrix of indeterminates.

S=Kl[xj:1<i<j<n]

Gvenl<n<---<n<m 1<¢g<---<c¢g<n

t-minor: [r1,..., refc1,. .., celx = det(x,q)ij=1,..

Determinantal ring: S//I:(X) with /(X) = ( t-minors of X )

Variants: generic symmetric matrix, generic skew-symmetric matrix
(and ideals of pfaffians), generic Hankel matrices
They appear in various contexts, e.g.

» classical invariant theory,

» t = 2: defining ideal of the Segre/Veronese/Grassmannian
variety,

> higher t: secant varieties of Segre/Veronese/Grassmannian
variety.
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Grobner bases and determinantal rings of minors

(Sturmfels, 1990)

1. The t-minors are a GB of /;(X) w.r.t. diagonal term order.
Tools: KRS correspondence and standard monomial theory.

2. in(/¢(X)) is associated to a shellable simplicial complex.
Tools: results of Bjorner on multiple chains complexes
associated to planar distributive lattices.

» S/1:(X) is Cohen Macaulay

> Its Hilbert Series can be described combinatorially.

Similar results for skew-symmetric, symmetric, Hankel matrices,
powers and product of determinantal ideals
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Universal GB for minors, t = 2

Theorem (Sturmfels, Villareal)

Universal GB of h(X) is the set of all the binomials associated to
the cycles of the complete bipartite graph K, 5

All the initial ideals of /(X) are radical and define CM rings (indeed
they are associated to a shellable simplicial complex )

Example:

K33 : — X11X22X33 — X12X23X31
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X = (xjj) generic matrix of size m x n, m < n.
a minor of size m is called maximal minor: [cy, ..., cm]x

Im(X) = ( maximal minors of X )

Bernstein-Sturmfels-Zelevinsky (1993-94)

The m-minors of X form a universal GB of /,,(X)

Boocher (2011)

For every term order <:

> Bij(Im(X)) = Bjj(in<(Im(X)))

» in particular in.(/»(X)) has a linear resolution
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Our first contribution: both results are consequence of a
degeneration argument

M f.g. graded S-module
Hilbert series of M: HS(M, y) = 3", (dimk M)y’

Let M, T be f.g. graded S-modules and let J = (z;,...,2s) C S be
a homogeneous ideal. Suppose that:

(1) HS(T,y) > HS(M, y) coefficentwise.
(2) HS(T/JT,y) =HS(M/JM,y)

(3) z1,...,2s is M-regular sequence.

Then HS(T,y) = HS(M,y) and zi, ..., zs is a T-regular sequence.
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D = (inx([c1y .- -semlx) 11 < <...cm < n) Cing(Im(X))

Pick A = (aj;) € Mmn(K™) such that all max minors are # 0 and
new variables yi,..., ¥n.
Mapping x;; to ajjy;, we get a K-algebra map

®: S =Klxg] — Kyl = Klyi, - -, vl

> ([cr,. o Emlx) = Yo YeulCL, - -+ Cm]a
» m monomial of [c1,...,cm|x = (M) =ayq - ye, a € K*

PUn(X) =g Yem:1<a<a<--<cm<n) =dD)
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Universal GB for maximal minors: “short proof”

D = (inx([c1, .- emlx) 11 <a < < cm < n) Cing(In(X))

Apply the Lemma with data

M=S/In(X), T=5/D, J=Kerd

(1) D Cing(Im(X)) = HS(T,y) > HS(M,y)
(2) (Im(X)) =P(D) = HS(M/JIM,y)=HS(T/JT,y)
(3) dim M — dim M/JM = the number of generators of

J = Jis generated by M-regular sequence

= HS(5/D,y) = HS(S/In(X),y) = D = in(In(X))
J gen. by M and T-reg. seq. = [jj(Im(X)) = Bjj(in<(Im(X)))
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Boocher (2011)

Same statements (UGB+Betti numbers under control) hold also if
one replaces some of the entries of X with 0's.

Is it possible to prove similar results for matrices of linear forms?

Let L = (L;) an m x n matrix, m < n, with Lj; € Ry.

Eagon-Northcott

height(/m(L)) < height(/m(X)) =n—m+1
If = holds, then the Eagon-Northcott complex is a minimal free
resolution of /(L)
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What can go wrong

Example 1

_ 0 X1 X2 X3 . _ @ _
L_<x1 % 0 X4) m = 2,n =4, height(h(L)) =2<3

R/hk(L) not koszul = k(L) has no GB of quadrics
(not even after a change of coordinates)

| \

Example 2

. X1 +Xo X3 X3 _ . . _
L—( 0 t x2> m = 2,n = 3, height(h(L)) =2

in-(h(L)) has a generator in degree 3 for every < (if char(K) # 2)
= k(L) has no GB of quadrics
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What can go wrong

Example 3

[ — X1 X4 X3
S \Uxs X1+ Xe X
The entries of L are linearly independent over K

(i.e., L arises from a matrix of variables by a change of coordinates)

For the most < the 2-minors are a GB of k(L).

But in<(/k(L)) has a generator in degree 3 for every < with
X1 =X >+ > Xp

— the 2-minors are not a UGB
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Our generalizations

Matrices of linear forms that are either column or row graded
Column-graded

deg xjj = ¢j € Z".

L= (L,J) with deg L,'j =€), that is, L,'j = ZT:I )\iijkja /\ijk € K.

0 X2+ x2 X23 —X24

| \

Row-graded
deg xjj = ¢; € Z™.

L= (LU) with deg L,'J' = g;, that is, L,'J' = ZT:I )\,'ij,'k, >‘Uk € K.

Example:
0 X21 X1 +4x04  Xo4

[ — ( X11 X11 +X12 X111 — X12 X4 )
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Column-graded

Theorem 1 (Conca, Gorla, -)

Assume L = (Lj;) column-graded. Then:
(a) the maximal minors of L form a universal GB of /n,(L).
(b) In(L) is radical and has a linear resolution.

(c) in<(/m(L)) is radical and has a linear resolution for every <.
In particular, Bi(Im(L)) = Bjj(in<(Im(L))) for all i, ;.

(d) projdim /(L) = projdimin(/m(L)) = n—m ... unless
Im(L) = 0 or a column of L is identically 0.

Remarks :
» the generators of /,,(L) have all distinct multidegrees

» If height(/,(L)) = n— m+ 1, Theorem 1 can be proved with
arguments similar to the ones used for /,(X)
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Row-graded

Main difference with the column-graded case:

all the minors are in the same multidegree — we cannot expect
that the maximal minors are a universal GB since they might have
all the same initial term.

Example

Consider K[xi,...,xs] multigraded by
deg(x1) = deg(x3) = deg(xs) = (1,0)
deg(x2) = deg(xs) = deg(xs) = (0, 1).

=™ 2x1+x3 —x1+ X5
X2 Xo+Xg X2+ X
The 2 minors of L have all degree (1,1).

If x1 = x2 > ... > xg, then in~(f) = xyx2 for every 2-minor f
Thus the minors cannot be a universal GB!
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Row-graded

Theorem 2 (Conca, Gorla, -)

Assume L = (L;;) row-graded and height(/n(L)) = n— m+ 1.
Then:

(a) There is a universal GB of elements of (total) degree m.
(b) Im(L) is radical

(c) in<(/m(L)) is radical and has a linear resolution for every <.
In particular, Bji(Im(L)) = Bjj(in<(Im(L))) for all i, ;.

Remarks :

» Experiments show that perhaps the assumption on the height
is superfluous

» Main tool of the proof of Theorems 1 and 2: a rigidity
property of multigraded generic initial ideals
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Generic initial ideal

Theorem /Definition

GL,(K) acts by linear substitution on R = K|[x1, ..., Xp].
For g € GL,(K) and | C R consider g(/)

Fix a term order. As g varies in GL,(K) compute in(g(/))

For almost all g one gets the same outcome — gin(/)

Properties:

» gin(/) is Borel fixed, that is, fixed by the upper triangular
matrices in GL,(K)

» HS(/,y) = HS(gin(/), y)
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Multigraded generic initial ideal
R=K[xj:i=1,...,mand j=1...,n;] multi graded by
deg(xj) =e € Z™ forall j=1,...,n;.

(Multigraded) Hilbert series of a multi graded R-module M:

HS(M,y) = HS(M, y1,...,ym) = » _ (dim M)y
aezm
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Definition

G = GLp(K) x --- x GLp,,(K) acts by linear substitution on R
preserving the multigraded structure.

g € G, | C R multigraded ideal — g(/) (multigraded)

Fix a term order
As g varies in G compute in(g(/))
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R=K[xj:i=1,...,mand j=1...,n;] multi graded by
deg(xj) =e € Z™ forall j=1,...,n;.

Definition

G = GLp(K) x --- x GLp,,(K) acts by linear substitution on R
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Multigraded generic initial ideal
R=K[xj:i=1,...,mand j=1...,n;] multi graded by
deg(xj) =e € Z™ forall j=1,...,n;.

Definition

G = GLp(K) x --- x GLp,,(K) acts by linear substitution on R
preserving the multigraded structure.

g € G, | C R multigraded ideal — g(/) (multigraded)

Fix a term order
As g varies in G compute in(g(/))

For almost all g one gets the same outcome — multigin(/)

Properties:

» multigin(/) is Borel fixed, that is, fixed by the upper
triangular block matrices in G

» HS(/, y) = HS(multigin(/), y)
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U=A{(b1,...,bm) € N": b; < nj for every i =1,...,m}.

Prime Borel-fixed ideals

» Forevery be U: Pp=(xj:i=1,...,mand 1< <b)is
prime and Borel fixed

» Every prime Borel fixed ideal is of this form

» | Borel fixed = assoc. prime ideals of / are Borel fixed

4

Radical Borel-fixed ideals

| radical Borel fixed, Min(/) = {Pp,, ..., Pp,}

» [ is the Alexander dual of the polarization of

J:(HxJ-b”:i:l,...,c)CK[xl,...,xm]
b;;>0

> gens of /| of the same multidegree — [ has a linear res.

A\
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Radical Borel-fixed ideals

Let /, J multi graded Borel-fixed ideals with HS(/,y) = HS(J, y).

If I is radical then [ = J

Idea of the proof:
» | Borel fixed = Min(/) are Borel fixed

» explicit description of prime Borel fixed ideals = HS(/,y)
determines Min(/)

> Min(/) = Min(J), / radical = J C |
» = is forced by HS(/,y) = HS(J,y)
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Radical Borel-fixed ideals

Let /, J multi graded Borel-fixed ideals with HS(/,y) = HS(J, y).

If I is radical then [ = J

Corollary

Let / be Borel-fixed and radical. J such that HS(/, y) = HS(J, y).
Then multigin(J) = /. In particular,

(a) Jis radical
(b) I has a linear resolution = J has a linear resolution
(c) R/l is Cohen-Macaulay = R/J is Cohen-Macaulay

To prove Theorems 1-2:
have a guess for multigin(/,(L)) — call it /.
apply corollary with J = I,(L) and with J = in(/,(L))
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Proof of Theorem 1 - 2

Fix any term order with (wlg):
X1j = Xijj ifi >1 (Thm 1) or Xjj = Xik ifk>j(Thm 2)

Let | = (chlxlcg o X, - [Cl, ey Cm]L 75 O) (Thm 1)
and | = (X1, X2¢, - * Xmep, © €1+ -+ Cm < n) (Thm 2)

Properties of /

» it is radical and Borel fixed (easy)

> it is the ideal of the Alexander dual of a CM simplicial
complex (different in case 1 and 2) =- it has a linear resolution

Moreover:
HS(/,y) = HS(Im(L),y) = HS(in<(/m(L)), y) for every <

(Hard and different in case 1 and 2)
Combinatorial tools: manipulation of power series expansions
involving symmetric polynomials
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Proof of Theorem 1 - 2
| = (chlxlc2 o Xle, - [C1, ey Cm]L 7& O) (Thm 1)
I = (X1e,%2¢, " * Xme, @ €L+ -Cm < n) (Thm 2)
By the Corollary:
» | = multigin(/n(L)) = multigin(in(/m(L))) for every <
> Im(L),in<(/m(L)) are radical and have a linear resolution
= Bij(Im(L)) = Bjj(in<(Im(L)))

= Im(L) has a GB of elements of degree m.

Theorem 1:

(in<([ety -y enle = [ety--vyenle #0) Cing(Im(L))
and deg(in<([c1,...,Cn]L) = € + -+ + €, all distinct
= “=" holds.

Projective dimension: [ is the Alexander dual of a complex related
to a matroid, whose regularity is known



Thanks for the attention!



