Markov bases of lattice ideals

Marius Vladoiu

Faculty of Mathematics and Computer Science University of Bucharest

MOCCA, Levico Terme September 12, 2014

イロト イポト イヨト イヨト

ъ

Applications to algebraic statistics

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattice ideals

Let $L \subset \mathbb{Z}^n$ be a lattice. The lattice ideal $I_L \subset K[x_1, \ldots, x_n]$ is

$$I_L := \langle \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} : \mathbf{u} - \mathbf{v} \in L \rangle = \langle \mathbf{x}^{\mathbf{w}^+} - \mathbf{x}^{\mathbf{w}^-} : \mathbf{w} \in L \rangle$$

Definition

If *L* is such that $L \cap \mathbb{N}^n = \{\mathbf{0}\}$ (repectively $L \cap \mathbb{N}^n \neq \{\mathbf{0}\}$) we say that *L* is *positively graded* (*not positively graded*). Let *L*_{pure} be the sublattice of *L* generated by $L \cap \mathbb{N}^n$.

イロト イ理ト イヨト イヨト

Minimal generating sets of lattice ideals

Definition

A set *S* is a Markov basis for I_L if *S* consists of binomials and *S* is a minimal generating set of I_L of minimal cardinality.

For counting purposes, a binomial B is the same as -B.

- How many "different" Markov bases are there?
- Can we compute the cardinality of a Markov basis?
- Can we compute all Markov bases?
- Is there a characteristic shared by different Markov bases?

・ 同 ト ・ ヨ ト ・ ヨ ト

Degrees and fibers

Let \mathcal{A} be the subsemigroup of \mathbb{Z}^n/L generated by the elements $\{\mathbf{a}_i = \mathbf{e}_i + L : 1 \le i \le n\}$, where $\{\mathbf{e}_i : 1 \le i \le n\}$ is the canonical basis of \mathbb{Z}^n and set

$$\deg_{\mathcal{A}}(\mathbf{x}^{\mathbf{v}}) := v_1 \mathbf{a}_1 + \cdots + v_n \mathbf{a}_n \in \mathcal{A}$$

where $\mathbf{x}^{\mathbf{v}} = x_1^{v_1} \cdots x_n^{v_n}$. It follows that

$$\textit{I}_{\textit{L}} = \langle \textbf{x}^{\textbf{u}} - \textbf{x}^{\textbf{v}} : \; \textsf{deg}_{\mathcal{A}}(\textbf{x}^{\textbf{u}}) = \textsf{deg}_{\mathcal{A}}(\textbf{x}^{\textbf{v}}) \; \rangle$$

and that I_L is \mathcal{A} -graded.

Definition

Let $\text{deg}_{\mathcal{A}}(\mathbf{x}^u) = \mathbf{b}$. The fiber of u is the following set of monomials:

$$\mathcal{F}_{\mathbf{x}^{\mathbf{u}}} = \deg_{\mathcal{A}}^{-1}(\mathbf{b}) = \{\mathbf{x}^{\mathbf{w}} \mid \deg_{\mathcal{A}}(\mathbf{x}^{\mathbf{w}}) = \mathbf{b}\} = \{\mathbf{x}^{\mathbf{w}} : \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{w}} \in I_{L}\}$$

• The semigroup \mathcal{A} is partially ordered:

 $\textbf{c} \geq \textbf{d} \Longleftrightarrow \ \text{there is } \textbf{e} \in \mathcal{A} \ \text{such that } \textbf{c} = \textbf{d} + \textbf{e} \ .$

- The A-grading of I_L forces every I_L -fiber to be finite.
- The fibers can be partially ordered by deg_A.
- (the graded Nakayama Lemma "works") All minimal binomial generating sets of *I_L* have the same cardinality and the same *A*-degrees.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Generating I_L when $L \cap \mathbb{N}^n = 0$ (CKT 2007)

For every degree $\mathbf{b} \in \mathcal{A}$ define a subideal of I_L generated by the binomials that have \mathcal{A} -degrees **less** than **b**.

Definition

$$\textit{I}_{\textit{L},<\textit{b}} = \textit{I}_{\textit{L},<\textit{F}} = (\textit{\textbf{x}}^{\textit{u}} - \textit{\textbf{x}}^{\textit{v}} \mid \textit{deg}_{\mathcal{A}}(\textit{\textbf{x}}^{\textit{u}}) = \textit{deg}_{\mathcal{A}}(\textit{\textbf{x}}^{\textit{v}}) \gneqq \textit{b}) \subset \textit{I}_{\textit{L}}$$

where *F* is the fiber at **b**.

Then we define two graphs.

Definition

First graph Let $G(\mathbf{b})$ be the graph with vertices the elements of the fiber $F = \deg_{\mathcal{A}}^{-1}(\mathbf{b})$ and edges all the sets $\{\mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}\}$ whenever $\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \in I_{L,<\mathbf{b}}$.

Generating I_L when $L \cap \mathbb{N}^n = 0$ (CKT 2007)

Definition

The <u>Second graph</u> is the complete graph with vertex set the connected components of first graph $G(\mathbf{b})$. Let $T_{\mathbf{b}}$ be a spanning tree of this graph.

For every edge of the tree $T_{\mathbf{b}}$ joining two components of $G(\mathbf{b})$ take one binomial by considering the difference of (two arbitrary) monomials, one from each component. For every **b**, choose a tree $T_{\mathbf{b}}$ on the graph $G(\mathbf{b})$ (whose vertices are the connected components of the fiber at **b**) and then choose the binomials. Denote this collection by $\mathcal{F}_{T_{\mathbf{b}}}$.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Picture

Marius Vladoiu Markov bases of lattice ideals

ヘロト 人間 とく ヨン 人 ヨン

Picture

Marius Vladoiu Markov bases of lattice ideals

ヘロト 人間 とく ヨン 人 ヨン

æ

Picture

Generating I_L when $L \cap \mathbb{N}^n = 0$ (CKT 2007)

Theorem

The set $\mathcal{F} = \cup_{\mathbf{b} \in \mathcal{A}} \mathcal{F}_{T_{\mathbf{b}}}$ is a Markov basis of I_L .

Let $\mu(I_L)$ be the cardinality of a Markov basis, $n_{\mathbf{b}}$ the number of connected components of $G(\mathbf{b})$, and $t_i(\mathbf{b})$ the number of vertices of the *i*th component.

Theorem

$$\mu(I_L) = \sum_{\mathbf{b} \in \mathcal{A}} (n_{\mathbf{b}} - 1).$$

Theorem

The number of different Markov bases of IL is finite and equal to

$$\prod_{\mathbf{b}\in A} t_1(\mathbf{b})\cdots t_{n_{\mathbf{b}}}(\mathbf{b})(t_1(\mathbf{b})+\cdots+t_{n_{\mathbf{b}}}(\mathbf{b}))^{n_{\mathbf{b}}-2}$$

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \text{ (CTV1)}$

Bad News!

• all fibers are infinite.

• there is no partial order between the fibers.

But

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

 $F \equiv_L G \Leftrightarrow (\exists) \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}$ monomials s.t. $\mathbf{x}^{\mathbf{u}} F \subset G$ and $\mathbf{x}^{\mathbf{v}} G \subset F$.

and order the equivalence classes

Definition

Let \overline{F} , \overline{G} be two equivalence classes of I_L -fibers. We say that $\overline{F} \leq_{I_l} \overline{G}$ if there exists $\mathbf{x}^{\mathbf{u}}$ such that $\mathbf{x}^{\mathbf{u}} F \subset G$.

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \text{ (CTV1)}$

Bad News!

all fibers are infinite.

• there is no partial order between the fibers.

But

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

 $F \equiv_L G \Leftrightarrow (\exists) \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}$ monomials s.t. $\mathbf{x}^{\mathbf{u}} F \subset G$ and $\mathbf{x}^{\mathbf{v}} G \subset F$.

and order the equivalence classes

Definition

Let \overline{F} , \overline{G} be two equivalence classes of I_L -fibers. We say that $\overline{F} \leq_{I_L} \overline{G}$ if there exists $\mathbf{x}^{\mathbf{u}}$ such that $\mathbf{x}^{\mathbf{u}} F \subset G$.

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \text{ (CTV1)}$

Bad News!

all fibers are infinite.

• there is no partial order between the fibers.

But

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

 $F \equiv_L G \Leftrightarrow (\exists) \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}$ monomials s.t. $\mathbf{x}^{\mathbf{u}} F \subset G$ and $\mathbf{x}^{\mathbf{v}} G \subset F$.

and order the equivalence classes

Definition

Let \overline{F} , \overline{G} be two equivalence classes of I_L -fibers. We say that $\overline{F} \leq_{I_L} \overline{G}$ if there exists $\mathbf{x}^{\mathbf{u}}$ such that $\mathbf{x}^{\mathbf{u}} F \subset G$.

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \ (\mathsf{CTV1})^n$

Bad News!

- all fibers are infinite.
- there is no partial order between the fibers.

But

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

 $F \equiv_L G \Leftrightarrow (\exists) \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}$ monomials s.t. $\mathbf{x}^{\mathbf{u}} F \subset G$ and $\mathbf{x}^{\mathbf{v}} G \subset F$.

and order the equivalence classes

Definition

Let \overline{F} , \overline{G} be two equivalence classes of I_L -fibers. We say that $\overline{F} \leq_{I_L} \overline{G}$ if there exists $\mathbf{x}^{\mathbf{u}}$ such that $\mathbf{x}^{\mathbf{u}}F \subset G$.

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \text{ (CTV1)}$

Note that:

1) $L_{pure} = \{\mathbf{0}\}$ implies $\overline{F} = \{F\}$, and the order on the equivalence classes of fibers agrees with the degree-ordering of the fibers.

2) The cardinality of \overline{F} is fixed and is determined by L_{pure} .

3) The Noetherian property of the ring guarantees that all chains of equivalence classes of fibers have a minimal element.

Definition

$$\begin{split} I_{L,<\overline{F}} &= (\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \mid \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}} \in G, \overline{G} < \overline{F}) \subset I_L. \\ I_{L,<\overline{F}} &= (\mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}} \mid \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}} \in G, \overline{G} \leq \overline{F}) \subset I_L. \end{split}$$

$L \cap \mathbb{N}^n \neq \{\mathbf{0}\} \text{ (CTV1)}$

Recall
$$L_{pure}$$
! Denote $\sigma = \operatorname{supp}(L_{pure})$, and $\mathbf{u}^{\sigma} = (u_i)_{i \notin \sigma}$.

Definition

First graph Let $G(\overline{F})$ be the graph with vertices the elements of $G(M_F)^{\sigma}$. The edges of $G(\overline{F})$ correspond to binomials of $I_{L < \overline{F}}$.

Next consider the connected components of $G(\overline{F})$: these are the vertices of the second graph.

Definition

Second graph: The complete graph on the components of $G(\overline{F})$. We call this graph $\Gamma(\overline{F})$.

Consider, as before, spanning trees of $\Gamma(\overline{F})$.

・ロト ・ 理 ト ・ ヨ ト ・

True Generalization

- If $L \cap \mathbb{N}^n = \{0\}$ then
 - $\sigma = \{\}$
 - $\overline{F} = \{F\}$
 - $G(M_F)$ is equal to F

• $I_{L,<\overline{F}} = I_{L,<\mathbf{b}}$ where **b** is the \mathcal{A} -degree of any element in *F*. Thus we obtain the same graphs.

ヘロト 人間 とくほ とくほ とう

æ

Markov bases of pure lattice ideals

Theorem

(CTV1) $B = \mathbf{x}^{\mathbf{u}} - \mathbf{x}^{\mathbf{v}}$ belongs to a Markov basis of I_L if and only if B is not in $I_{L,<\overline{F_{\mathbf{x}\mathbf{u}}}}$.

Theorem

(ES95) $I_{L_{pure}}$ is a complete intersection, generated minimally by rank(L_{pure}) elements.

We complete this theorem by giving a description of all generating sets of $I_{L_{pure}}$ in terms of the exponents of the binomials.

ヘロト 人間 ト 人目 ト 人目 トー

Markov Bases of I_L (CTV1)

Theorem

A set S of binomials of I_L is a Markov basis of I_L if and only if

- for every *F* the elements of S determine a spanning tree of Γ(*F*) and
- the binomials of S in the equivalence class of the fiber F_{x⁰} minimally generate the lattice generated by L ∩ Nⁿ.

What are the invariants of the Markov bases of I_L ?

Theorem

Let $S = \{B_1, ..., B_s\}$ be a Markov basis of I_L . The equivalence classes of fibers that correspond to these binomials and their multiplicity in S are uniquely determined and are invariants of I_L .

ヘロト ヘ帰 ト ヘヨト ヘヨト

Markov Bases of I_L (CTV1)

What can we compute?

We can compute the cardinality of a Markov basis, the Markov fibers, the indispensable fibers, the indispensable binomials, and the indispensable monomials.

Theorem

$$\mu(I_L) = r + \sum_{\overline{F} \neq \overline{F}_{\{1\}}} (t(\overline{F}) - 1),$$

where $\mu(I_L)$ is the cardinality of a Markov basis, r is the rank of L_{pure} , and $t(\overline{F})$ is the number of vertices of $\Gamma_{\overline{F}}$.

イロト イポト イヨト イヨト

Markov Bases of I_L (CTV1)

What can we compute?

We can compute the cardinality of a Markov basis, the Markov fibers, the indispensable fibers, the indispensable binomials, and the indispensable monomials.

Theorem

$$\mu(I_L) = r + \sum_{\overline{F} \neq \overline{F}_{\{1\}}} (t(\overline{F}) - 1),$$

where $\mu(I_L)$ is the cardinality of a Markov basis, *r* is the rank of L_{pure} , and $t(\overline{F})$ is the number of vertices of $\Gamma_{\overline{F}}$.

・ロト ・聞 ト ・ ヨト ・ ヨト

Binomial Complete Intersection

Definition

Let *L* be a lattice of rank *r*. The lattice ideal I_L is called a binomial complete intersection if there exist binomials B_1, \ldots, B_r such that $I_L = \langle B_1, \ldots, B_r \rangle$.

If $L \cap \mathbb{N}^n = \{\mathbf{0}\}$ then complete intersection lattice ideals are automatically binomial complete intersections.

When is the lattice ideal a complete intersection ideal? The problem is completely solved when *L* is positively graded by a series of articles: Herzog (70), Delorne(76), Stanley (77), Ishida (78), Watanabe(80), Nakajima(85), Schafer (85), Rosales and Garcia-Sanchez (95), Fischer, Morris and Shapiro (95), Scheja, Scheja and Storch (99), Morales and Thoma (05).

Mixed dominating matrices

The final conclusion of this series of articles is that I_L is a complete intersection if and only if the matrix M whose rows correspond to a basis of L is **mixed dominating**.

Definition

A matrix M is mixed dominating if every row of M has a positive and negative entry and M contains no square submatrix with this property.

Example

$$\begin{bmatrix} 1 & -1 & 0 \\ 6 & 0 & -1 \end{bmatrix}$$

イロト イポト イヨト イヨト

Complete intersections and mixed dominating matrices in the general case

We now consider arbitrary sublattices *L* of \mathbb{Z}^n . In (CTV1) we showed that the rank *L* is determined by the rank of L^{σ} (which is a positively graded lattice) and the rank of L_{pure} . Here L^{σ} is the sublattice of $(\mathbb{Z}^n)^{\sigma}$ generated by the vectors \mathbf{u}^{σ} .

Theorem

$$\operatorname{rank}(L) = \operatorname{rank}(L^{\sigma}) + \operatorname{rank}(L_{pure}).$$

Theorem

(CTV1) Let $L \subset \mathbb{Z}^n$ be a lattice. The ideal I_L is binomial complete intersection if and only if there exists a basis of L^{σ} so that its vectors give the rows of a mixed dominating matrix.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Universal Gröbner basis and Graver basis

Let *A* be a matrix in $\mathbb{Z}^{m \times n}$. The toric ideal I_A is the lattice ideal $I_{L(A)}$, where $L(A) = \ker_{\mathbb{Z}}(A)$. We assume that $L(A) \cap \mathbb{N}^n = \{\mathbf{0}\}$.

Theorem

(St 95) For any toric ideal I_A the following containments hold:

Universal Gröbner basis of A \subset Graver basis of A

What is the relation between the universal Gröbner basis of *A* and the universal Markov basis of *A*? What is the relation between the universal Markov basis of *A* and the Graver basis of *A*?

Example

Let $I = (x_1x_2 - x_3x_4, x_5x_6 - x_7x_8, x_1^2x_2^2x_3x_4 - x_5x_6x_7x_8)$. This generating set is not part of any reduced Gröbner basis of *I*.

Example

Let

It can be shown that

$$I_{A} = (x_{1}x_{2} - x_{3}x_{4}, x_{5}x_{6} - x_{7}x_{8}, x_{1}^{2}x_{2}^{2}x_{3}x_{4} - x_{5}x_{6}x_{7}x_{8}).$$

The binomial $x_1^2 x_2^2 x_3 x_4 - x_5 x_6 x_7 x_8$ does not belong to a reduced Gröbner basis of I_A since for any monomial order, the initial term of $x_1 x_2 - x_3 x_4$ divides $x_1^2 x_2^2 x_3 x_4$ while the initial term of $x_5 x_6 - x_7 x_8$ divides $x_5 x_6 x_7 x_8$.

・ロ と く 厚 と く 思 と く 思 と

ъ

Markov Polytopes

Theorem

(CKT07, DSS09) **u** is in the universal Markov basis of A if and only if \mathbf{u}^+ and \mathbf{u}^- belong to different connected components of $G_{\mathbf{u}}$.

We consider the convex hulls of the connected components of G_{u} .

Definition

(CTV2) A Markov polytope is the convex hull of the elements in a connected component of this graph.

イロト イポト イヨト イヨト

Universal Markov and universal Gröbner basis

Theorem

(StWeZi 95) $\mathbf{u} \in L$ is in the universal Gröbner basis of A if \mathbf{u} is in the Graver basis of A and $[\mathbf{u}^+, \mathbf{u}^-]$ is an edge of the convex hull of all points in \mathcal{F}_u .

We get the following characterization:

Theorem

(CTV2) An element **u** of the universal Markov basis of A belongs to the universal Gröbner basis of A if and only if \mathbf{u}^+ and \mathbf{u}^- are vertices of two different (Markov) polytopes.

ヘロト ヘ帰 ト ヘヨト ヘヨト

Example of Markov polytope

Example

Let *A* be the matrix of the previous example. Recall that $x_1^2 x_2^2 x_3 x_4 - x_5 x_6 x_7 x_8$ is in the universal Markov basis of I_A but not in the universal Gröbner basis of I_A . Let $\mathbf{u} = (2, 2, 1, 1, -1, -1, -1, -1) \in L$. Then $|\mathcal{F}_{\mathbf{u}}| = 7$ and $\mathcal{F}_{\mathbf{u}} =$ $\{(3, 3, 0, ..., 0), u^+, (1, 1, 2, 2, 0, 0, 0, 0), (0, 0, 3, 3, 0, 0, 0, 0)\}$

 $\cup \{(0,\ldots,0,2,2,0,0), u^-, (0,\ldots,0,2,2)\}$

The graph G_u has two connected components.

The Markov polytopes are line segments: \mathbf{u}^+ and \mathbf{u}^- are not vertices of their Markov polytopes.

くロト (得) (目) (日)

Universal Markov basis for positive toric ideals

Consider the toric ideal I_A such that $L(A) \cap \mathbb{N}^n = \{\mathbf{0}\}$. We have the following inclusions:

 $\mathcal{S}(I_A) \subseteq \mathcal{M}(I_A) \subseteq \mathcal{G}(I_A).$

- (St95): G(I_A) is the subset of L(A) whose elements have no proper conformal decomposition.
- (HS2005+CTV3): $S(I_A)$ is the subset of L(A) whose elements have no proper semiconformal decomposition.
- (CTV3): *M*(*I_A*) is the subset of *L*(*A*) whose elements have no proper strongly semiconformal decomposition.

・ロン ・聞 と ・ ヨ と ・ ヨ と

Markov complexity m(A)

Let A be an arbitrary integer matrix.

- Santos, Sturmfels 2003: g(A) is equal to the maximum
 1-norm of an element in G(G(A)). Thus g(A) is finite.
- Santos, Sturmfels 2003: $m(A) \leq g(A)$.
- Hoşten, Sullivant 2005: m(A) ≥ the maximum 1-norm of any element in G(S(A)).

How to compute m(A) in general?

So far a mystery!!!

・ロト ・ 同ト ・ ヨト ・ ヨトー

Markov complexity m(A)

Let A be an arbitrary integer matrix.

- Santos, Sturmfels 2003: g(A) is equal to the maximum
 1-norm of an element in G(G(A)). Thus g(A) is finite.
- Santos, Sturmfels 2003: $m(A) \leq g(A)$.
- Hoşten, Sullivant 2005: m(A) ≥ the maximum 1-norm of any element in G(S(A)).

How to compute m(A) in general?

So far a mystery!!!

・ロト ・同ト ・ヨト ・ヨトー

Markov complexity for monomial curves in \mathbb{A}^3

Theorem

(CTV3) Let $A = \{n_1, n_2, n_3\}$ be a set of positive integers with $gcd(n_1, n_2, n_3) = 1$. Then m(A) = 2 if A is complete intersection, and m(A) = 3 if A is not complete intersection. Moreover, for any $r \ge 2$ we have $\mathcal{M}(A^{(r)}) = \mathcal{S}(A^{(r)})$

Theorem

(CTV3) Let $A = \{n_1, n_2, n_3\}$ such that $gcd(n_1, n_2, n_3) = 1$ and $d_{ij} = gcd(n_i, n_j)$ for all $i \neq j$. Then

$$g(A) \geq rac{n_1}{d_{12}d_{13}} + rac{n_2}{d_{12}d_{23}} + rac{n_3}{d_{13}d_{23}}$$

In particular, if n_1, n_2, n_3 are pairwise prime then $g(A) \ge n_1 + n_2 + n_3$.

Examples

Examples

(a) Let A = {3,4,5}. Computations with 4ti2 show that the maximum 1-norm of the elements of G(G(A)) is 12 = 3 + 4 + 5 and thus g(A) equals the the lower bound of the theorem.
(b) Let A = {2,3,17}. Computations with 4ti2 show that the maximum 1-norm of the elements of G(G(A)) is 30 and thus g(A) = 30, while the lower bound of the theorem is 22 = 2 + 3 + 17.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Examples

Examples

(a) Let $A = \{3, 4, 5\}$. Computations with 4ti2 show that the maximum 1-norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is 12 = 3 + 4 + 5 and thus g(A) equals the the lower bound of the theorem. (b) Let $A = \{2, 3, 17\}$. Computations with 4ti2 show that the maximum 1-norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is 30 and thus g(A) = 30, while the lower bound of the theorem is 22 = 2 + 3 + 17.

ヘロト ヘ帰 ト ヘヨト ヘヨト