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Lattice ideals

Let L ⊂ Zn be a lattice. The lattice ideal IL ⊂ K [x1, . . . , xn] is

IL := 〈xu − xv : u − v ∈ L〉 = 〈xw+
− xw−

: w ∈ L〉

Definition

If L is such that L ∩ Nn = {0} (repectively L ∩ Nn 6= {0}) we say
that L is positively graded (not positively graded). Let Lpure be
the sublattice of L generated by L ∩ Nn.
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Minimal generating sets of lattice ideals

Definition

A set S is a Markov basis for IL if S consists of binomials and S
is a minimal generating set of IL of minimal cardinality.

For counting purposes, a binomial B is the same as −B.

How many "different" Markov bases are there?

Can we compute the cardinality of a Markov basis?

Can we compute all Markov bases?

Is there a characteristic shared by different Markov bases?

Marius Vladoiu Markov bases of lattice ideals



Markov bases of lattice ideals
Applications

Applications to algebraic statistics

Degrees and fibers

Let A be the subsemigroup of Zn/L generated by the elements
{ai = ei + L : 1 ≤ i ≤ n}, where {ei : 1 ≤ i ≤ n} is the
canonical basis of Zn and set

degA(x
v) := v1a1 + · · ·+ vnan ∈ A

where xv = xv1
1 · · · xvn

n .
It follows that

IL = 〈xu − xv : degA(x
u) = degA(x

v) 〉

and that IL is A-graded.

Definition

Let degA(x
u) = b. The fiber of u is the following set of

monomials:

Fxu = deg−1
A (b) = {xw | degA(x

w) = b} = {xw : xu − xw ∈ IL}
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L ∩ Nn = {0}

The semigroup A is partially ordered:

c ≥ d ⇐⇒ there ise ∈ A such thatc = d + e .

The A-grading of IL forces every IL-fiber to be finite.

The fibers can be partially ordered by degA.

(the graded Nakayama Lemma "works") All minimal
binomial generating sets of IL have the same cardinality
and the same A-degrees.
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Generating IL when L ∩ Nn = 0 (CKT 2007)

For every degree b ∈ A define a subideal of IL generated by the
binomials that have A-degrees less than b.

Definition

IL,<b = IL,<F = (xu − xv | degA(x
u) = degA(x

v) � b) ⊂ IL

where F is the fiber at b.

Then we define two graphs.

Definition

First graph Let G(b) be the graph with vertices the elements of

the fiber F = deg−1
A (b) and edges all the sets {xu, xv}

whenever xu − xv ∈ IL,<b.
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Generating IL when L ∩ Nn = 0 (CKT 2007)

Definition

The Second graph is the complete graph with vertex set the
connected components of first graph G(b). Let Tb be a
spanning tree of this graph.

For every edge of the tree Tb joining two components of G(b)
take one binomial by considering the difference of (two
arbitrary) monomials, one from each component. For every b,
choose a tree Tb on the graph G(b) (whose vertices are the
connected components of the fiber at b) and then choose the
binomials. Denote this collection by FTb .
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Generating IL when L ∩ Nn = 0 (CKT 2007)

Theorem

The set F = ∪b∈AFTb is a Markov basis of IL.

Let µ(IL) be the cardinality of a Markov basis,
nb the number of connected components of G(b), and
ti(b) the number of vertices of the i th component.

Theorem

µ(IL) =
∑

b∈A(nb − 1).

Theorem

The number of different Markov bases of IL is finite and equal to
∏

b∈A

t1(b) · · · tnb(b)(t1(b) + · · ·+ tnb(b))
nb−2.
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L ∩ Nn 6= {0} (CTV1)

Bad News!
all fibers are infinite.
there is no partial order between the fibers.

But
We can consider equivalence classes of fibers under the
following equivalence relation:

Definition

F ≡L G ⇔ (∃)xu, xv monomials s.t. xuF ⊂ G and xvG ⊂ F .

and order the equivalence classes

Definition

Let F , G be two equivalence classes of IL-fibers. We say that
F ≤IL G if there exists xu such that xuF ⊂ G.
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L ∩ Nn 6= {0} (CTV1)

Note that:
1) Lpure = {0} implies F = {F}, and the order on the
equivalence classes of fibers agrees with the degree-ordering
of the fibers.

2) The cardinality of F is fixed and is determined by Lpure.

3) The Noetherian property of the ring guarantees that all
chains of equivalence classes of fibers have a minimal element.

Definition

IL,<F = (xu − xv | xu, xv ∈ G,G < F ) ⊂ IL.

IL,≤F = (xu − xv | xu, xv ∈ G,G ≤ F ) ⊂ IL.
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L ∩ Nn 6= {0} (CTV1)

Recall Lpure! Denote σ = supp(Lpure), and uσ = (ui)i /∈σ.

Definition

First graph Let G(F ) be the graph with vertices the elements of
G(MF )

σ. The edges of G(F ) correspond to binomials of IL,<F .

Next consider the connected components of G(F ): these are
the vertices of the second graph.

Definition

Second graph: The complete graph on the components of
G(F ). We call this graph Γ(F ).

Consider, as before, spanning trees of Γ(F ).
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True Generalization

If L ∩ Nn = {0} then

σ = {}

F = {F}

G(MF ) is equal to F

IL,<F = IL,<b where b is the A-degree of any element in F .

Thus we obtain the same graphs.

Marius Vladoiu Markov bases of lattice ideals



Markov bases of lattice ideals
Applications

Applications to algebraic statistics

Markov bases of pure lattice ideals

Theorem

(CTV1) B = xu − xv belongs to a Markov basis of IL if and only
if B is not in IL,<Fxu

.

Theorem

(ES95) ILpure is a complete intersection, generated minimally by
rank(Lpure) elements.

We complete this theorem by giving a description of all
generating sets of ILpure in terms of the exponents of the
binomials.
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Markov Bases of IL (CTV1)

Theorem

A set S of binomials of IL is a Markov basis of IL if and only if

for every F the elements of S determine a spanning tree of
Γ(F ) and

the binomials of S in the equivalence class of the fiber Fx0

minimally generate the lattice generated by L ∩ Nn.

What are the invariants of the Markov bases of IL?

Theorem

Let S = {B1, . . . ,Bs} be a Markov basis of IL. The equivalence
classes of fibers that correspond to these binomials and their
multiplicity in S are uniquely determined and are invariants of IL.
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Markov Bases of IL (CTV1)

What can we compute?
We can compute the cardinality of a Markov basis, the Markov
fibers, the indispensable fibers, the indispensable binomials,
and the indispensable monomials.

Theorem

µ(IL) = r +
∑

F 6=F{1}

(t(F )− 1),

where µ(IL) is the cardinality of a Markov basis, r is the rank of
Lpure, and t(F ) is the number of vertices of ΓF .
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Binomial Complete Intersection

Definition

Let L be a lattice of rank r . The lattice ideal IL is called a
binomial complete intersection if there exist binomials
B1, . . . ,Br such that IL = 〈B1, . . . ,Br 〉.

If L ∩ Nn = {0} then complete intersection lattice ideals are
automatically binomial complete intersections.

When is the lattice ideal a complete intersection ideal? The
problem is completely solved when L is positively graded by a
series of articles: Herzog (70), Delorne(76), Stanley (77), Ishida
(78), Watanabe(80), Nakajima(85), Schafer (85), Rosales and
Garcia-Sanchez (95), Fischer, Morris and Shapiro (95), Scheja,
Scheja and Storch (99), Morales and Thoma (05).
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Mixed dominating matrices

The final conclusion of this series of articles is that IL is a
complete intersection if and only if the matrix M whose rows
correspond to a basis of L is mixed dominating.

Definition

A matrix M is mixed dominating if every row of M has a positive
and negative entry and M contains no square submatrix with
this property.

Example
[

1 −1 0
6 0 −1

]
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Complete intersections and mixed dominating
matrices in the general case

We now consider arbitrary sublattices L of Zn.
In (CTV1) we showed that the rank L is determined by the rank
of Lσ (which is a positively graded lattice) and the rank of Lpure.
Here Lσ is the sublattice of (Zn)σ generated by the vectors uσ.

Theorem

rank(L) = rank(Lσ) + rank(Lpure).

Theorem

(CTV1) Let L ⊂ Zn be a lattice. The ideal IL is binomial
complete intersection if and only if there exists a basis of Lσ so
that its vectors give the rows of a mixed dominating matrix.
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Universal Gröbner basis and Graver basis

Let A be a matrix in Zm×n. The toric ideal IA is the lattice ideal
IL(A), where L(A) = kerZ(A). We assume that L(A) ∩ Nn = {0}.

Theorem

(St 95) For any toric ideal IA the following containments hold:

Universal Gröbner basis of A ⊂ Graver basis of A

What is the relation between the universal Gröbner basis of A
and the universal Markov basis of A? What is the relation
between the universal Markov basis of A and the Graver basis
of A?

Example

Let I = (x1x2 − x3x4, x5x6 − x7x8, x2
1 x2

2 x3x4 − x5x6x7x8). This
generating set is not part of any reduced Gröbner basis of I.
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Example

Let

A =













2 2 2 2 3 3 3 3
4 0 4 0 3 3 3 3
4 0 0 4 3 3 3 3
2 2 2 2 6 0 6 0
2 2 2 2 6 0 0 6













.

It can be shown that

IA = (x1x2 − x3x4, x5x6 − x7x8, x
2
1 x2

2 x3x4 − x5x6x7x8).

The binomialx2
1 x2

2 x3x4 − x5x6x7x8 does not belong to a reduced
Gröbner basis ofIA since for any monomial order, the initial term of
x1x2 − x3x4 dividesx2

1 x2
2 x3x4 while the initial term ofx5x6 − x7x8

dividesx5x6x7x8.

Marius Vladoiu Markov bases of lattice ideals



Markov bases of lattice ideals
Applications

Applications to algebraic statistics

Markov Polytopes

Theorem

(CKT07, DSS09) u is in the universal Markov basis of A if and
only if u+ and u− belong to different connected components of
Gu.

We consider the convex hulls of the connected components of
Gu.

Definition

(CTV2) A Markov polytope is the convex hull of the elements in
a connected component of this graph.

Marius Vladoiu Markov bases of lattice ideals



Markov bases of lattice ideals
Applications

Applications to algebraic statistics

Universal Markov and universal Gröbner basis

Theorem

(StWeZi 95) u ∈ L is in the universal Gröbner basis of A if u is
in the Graver basis of A and [u+,u−] is an edge of the convex
hull of all points in Fu.

We get the following characterization:

Theorem

(CTV2) An element u of the universal Markov basis of A
belongs to the universal Gröbner basis of A if and only if u+

and u− are vertices of two different (Markov) polytopes.
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Example of Markov polytope

Example

Let A be the matrix of the previous example. Recall that
x2

1 x2
2 x3x4 − x5x6x7x8 is in the universal Markov basis ofIA but not in

the universal Gröbner basis ofIA. Let
u = (2, 2, 1, 1,−1,−1,−1,−1) ∈ L. Then|Fu| = 7 andFu =

{(3, 3, 0, . . . , 0), u+, (1, 1, 2, 2, 0, 0, 0, 0), (0, 0, 3, 3, 0, 0, 0, 0)}

∪ {(0, . . . , 0, 2, 2, 0, 0), u−, (0, . . . , 0, 2, 2)}

The graphGu has two connected components.

The Markov polytopes are line segments:u+ andu− are not vertices
of their Markov polytopes.

Marius Vladoiu Markov bases of lattice ideals



Markov bases of lattice ideals
Applications

Applications to algebraic statistics

Universal Markov basis for positive toric ideals

Consider the toric ideal IA such that L(A) ∩ Nn = {0}. We have
the following inclusions:

S(IA) ⊆ M(IA) ⊆ G(IA).

(St95): G(IA) is the subset of L(A) whose elements have no
proper conformal decomposition.

(HS2005+CTV3): S(IA) is the subset of L(A) whose
elements have no proper semiconformal decomposition.

(CTV3): M(IA) is the subset of L(A) whose elements have
no proper strongly semiconformal decomposition.
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Markov complexity m(A)

Let A be an arbitrary integer matrix.

Santos, Sturmfels 2003: g(A) is equal to the maximum
1-norm of an element in G(G(A)). Thus g(A) is finite.

Santos, Sturmfels 2003: m(A) ≤ g(A).

Hoşten, Sullivant 2005: m(A) ≥ the maximum 1-norm of
any element in G(S(A)).

How to compute m(A) in general?

So far a mystery!!!
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Markov complexity for monomial curves in A3

Theorem

(CTV3) Let A = {n1, n2, n3} be a set of positive integers with
gcd(n1, n2, n3) = 1. Then m(A) = 2 if A is complete
intersection, and m(A) = 3 if A is not complete intersection.
Moreover, for any r ≥ 2 we have M(A(r)) = S(A(r))

Theorem

(CTV3) Let A = {n1, n2, n3} such that gcd(n1, n2, n3) = 1 and
dij = gcd(ni , nj) for all i 6= j . Then

g(A) ≥
n1

d12d13
+

n2

d12d23
+

n3

d13d23
.

In particular, if n1, n2, n3 are pairwise prime then
g(A) ≥ n1 + n2 + n3.
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Examples

Examples

(a) LetA = {3, 4, 5}. Computations with 4ti2 show that the
maximum1-norm of the elements ofG(G(A)) is 12 = 3 + 4 + 5 and
thusg(A) equals the the lower bound of the theorem.
(b) LetA = {2, 3, 17}. Computations with 4ti2 show that the
maximum1-norm of the elements ofG(G(A)) is 30 and thus
g(A) = 30, while the lower bound of the theorem is22 = 2+3+17.
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