Markov bases of lattice ideals

Marius Vladoiu

Faculty of Mathematics and Computer Science
University of Bucharest

MOCCA, Levico Terme September 12, 2014

Summary

(1) Markov bases of lattice ideals
(2) Applications

3 Applications to algebraic statistics

Lattice ideals

Let $L \subset \mathbb{Z}^{n}$ be a lattice. The lattice ideal $I_{L} \subset K\left[x_{1}, \ldots, x_{n}\right]$ is

$$
I_{L}:=\left\langle\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}: \mathbf{u}-\mathbf{v} \in L\right\rangle=\left\langle\mathbf{x}^{\mathbf{w}^{+}}-\mathbf{x}^{\mathbf{w}^{-}}: \mathbf{w} \in L\right\rangle
$$

Definition

If L is such that $L \cap \mathbb{N}^{n}=\{\mathbf{0}\}$ (repectively $L \cap \mathbb{N}^{n} \neq\{\mathbf{0}\}$) we say that L is positively graded (not positively graded). Let $L_{\text {pure }}$ be the sublattice of L generated by $L \cap \mathbb{N}^{n}$.

Minimal generating sets of lattice ideals

Definition

A set S is a Markov basis for I_{L} if S consists of binomials and S is a minimal generating set of I_{L} of minimal cardinality.

For counting purposes, a binomial B is the same as $-B$.

- How many "different" Markov bases are there?
- Can we compute the cardinality of a Markov basis?
- Can we compute all Markov bases?
- Is there a characteristic shared by different Markov bases?

Degrees and fibers

Let \mathcal{A} be the subsemigroup of \mathbb{Z}^{n} / L generated by the elements $\left\{\mathbf{a}_{i}=\mathbf{e}_{i}+L: 1 \leq i \leq n\right\}$, where $\left\{\mathbf{e}_{i}: 1 \leq i \leq n\right\}$ is the canonical basis of \mathbb{Z}^{n} and set

$$
\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{v}}\right):=v_{1} \mathbf{a}_{1}+\cdots+v_{n} \mathbf{a}_{n} \in \mathcal{A}
$$

where $\mathbf{x}^{\mathbf{v}}=x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}$.
It follows that

$$
I_{L}=\left\langle\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}: \operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{u}}\right)=\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{v}}\right)\right\rangle
$$

and that I_{L} is \mathcal{A}-graded.

Definition

Let $\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{u}}\right)=\mathbf{b}$. The fiber of \mathbf{u} is the following set of monomials:

$$
F_{\mathbf{x}^{\mathbf{u}}}=\operatorname{deg}_{\mathcal{A}}^{-1}(\mathbf{b})=\left\{\mathbf{x}^{\mathbf{w}} \mid \operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{w}}\right)=\mathbf{b}\right\}=\left\{\mathbf{x}^{\mathbf{w}}: \mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{w}} \in I_{L}\right\}
$$

$L \cap \mathbb{N}^{n}=\{\mathbf{0}\}$

- The semigroup \mathcal{A} is partially ordered:

$$
\mathbf{c} \geq \mathbf{d} \Longleftrightarrow \text { there is } \mathbf{e} \in \mathcal{A} \text { such that } \mathbf{c}=\mathbf{d}+\mathbf{e} .
$$

- The \mathcal{A}-grading of I_{L} forces every I_{L}-fiber to be finite.
- The fibers can be partially ordered by $\operatorname{deg}_{\mathcal{A}}$.
- (the graded Nakayama Lemma "works") All minimal binomial generating sets of I_{L} have the same cardinality and the same \mathcal{A}-degrees.

Generating I_{L} when $L \cap \mathbb{N}^{n}=0$ (CKT 2007)

For every degree $\mathbf{b} \in \mathcal{A}$ define a subideal of I_{L} generated by the binomials that have \mathcal{A}-degrees less than \mathbf{b}.

Definition

$$
I_{L,<\mathbf{b}}=I_{L,<F}=\left(\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}} \mid \operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{u}}\right)=\operatorname{deg}_{\mathcal{A}}\left(\mathbf{x}^{\mathbf{v}}\right) \supsetneqq \mathbf{b}\right) \subset I_{L}
$$

where F is the fiber at \mathbf{b}.
Then we define two graphs.

Definition

First graph Let $G(b)$ be the graph with vertices the elements of the fiber $F=\operatorname{deg}_{\mathcal{A}}^{-1}(\mathbf{b})$ and edges all the sets $\left\{\mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}\right\}$ whenever $\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\boldsymbol{v}} \in I_{L,<\mathbf{b}}$.

Generating I_{L} when $L \cap \mathbb{N}^{n}=0$ (CKT 2007)

Definition

The Second graph is the complete graph with vertex set the connected components of first graph $G(\mathbf{b})$. Let $T_{\mathbf{b}}$ be a spanning tree of this graph.

For every edge of the tree $T_{\mathbf{b}}$ joining two components of $G(\mathbf{b})$ take one binomial by considering the difference of (two arbitrary) monomials, one from each component. For every \mathbf{b}, choose a tree $T_{\mathbf{b}}$ on the graph $G(\mathbf{b})$ (whose vertices are the connected components of the fiber at \mathbf{b}) and then choose the binomials. Denote this collection by $\mathcal{F}_{T_{\mathrm{b}}}$.

Markov bases of lattice ideals
Applications
Applications to algebraic statistics
Picture

Markov bases of lattice ideals
Applications
Applications to algebraic statistics
Picture

Generating I_{L} when $L \cap \mathbb{N}^{n}=0$ (CKT 2007)

Theorem

The set $\mathcal{F}=\cup_{\mathbf{b} \in \mathcal{A}} \mathcal{F}_{T_{\mathbf{b}}}$ is a Markov basis of I_{L}.
Let $\mu\left(I_{L}\right)$ be the cardinality of a Markov basis, n_{b} the number of connected components of $G(\mathbf{b})$, and $t_{i}(\mathbf{b})$ the number of vertices of the i th component.

Theorem

$$
\mu\left(I_{L}\right)=\sum_{\mathbf{b} \in \mathcal{A}}\left(n_{\mathbf{b}}-1\right)
$$

Theorem

The number of different Markov bases of I_{L} is finite and equal to

$$
\prod_{\mathbf{b} \in \mathcal{A}} t_{1}(\mathbf{b}) \cdots t_{n_{\mathbf{b}}}(\mathbf{b})\left(t_{1}(\mathbf{b})+\cdots+t_{n_{\mathbf{b}}}(\mathbf{b})\right)^{n_{\mathbf{b}}-2}
$$

$L \cap \mathbb{N}^{n} \neq\{0\}$ (CTV1)

Bad News!

- all fibers are infinite.
- there is no partial order between the fibers.

But
We can consider equivalence classes of fibers under the following equivalence relation:

Definition

$F \equiv L G \Leftrightarrow(\exists) \mathbf{x}^{\mathrm{u}}, \mathbf{x}^{\mathrm{v}}$ monomials s.t. $\mathbf{x}^{\mathrm{u}} F \subset G$ and $\mathbf{x}^{\mathrm{v}} G \subset F$.

and order the equivalence classes

Definition

Let \bar{F}, \bar{G} be two equivalence classes of I_{L}-fibers. We say that
$\bar{F} \leq_{L_{L}} \bar{G}$ if there exists x^{u} such that $x^{\mathrm{u}} F \subset G$.

$L \cap \mathbb{N}^{n} \neq\{\mathbf{0}\}(C T V 1)$

Bad News!

- all fibers are infinite.
- there is no partial order between the fibers.

But

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

and order the equivalence classes

Definition

Let \bar{F}, \bar{G} be two equivalence classes of $/_{L}$-fibers. We say that
$\bar{F} \leq_{L_{L}} \bar{G}$ if there exists x^{u} such that $x^{\mathrm{u}} F \subset G$.

$L \cap \mathbb{N}^{n} \neq\{\mathbf{0}\}(\mathrm{CTV} 1)$

Bad News!

- all fibers are infinite.
- there is no partial order between the fibers.

We can consider equivalence classes of fibers under the following equivalence relation:

Definition

and order the equivalence classes

Definition

Let \bar{F}, \bar{G} be two equivalence classes of I_{L}-fibers. We say that
$\bar{F} \leq_{L_{L}} \bar{G}$ if there exists x^{u} such that $x^{\mathrm{u}} F \subset G$.

$L \cap \mathbb{N}^{n} \neq\{\mathbf{0}\}(C T V 1)$

Bad News!

- all fibers are infinite.
- there is no partial order between the fibers.

But
We can consider equivalence classes of fibers under the following equivalence relation:

Definition
$F \equiv_{L} G \Leftrightarrow(\exists) \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}}$ monomials s.t. $\mathbf{x}^{\mathbf{u}} F \subset G$ and $\mathbf{x}^{\mathbf{v}} G \subset F$.
and order the equivalence classes

Definition

Let \bar{F}, \bar{G} be two equivalence classes of I_{L}-fibers. We say that
$\bar{F} \leq_{I_{L}} \bar{G}$ if there exists $\mathbf{x}^{\mathbf{u}}$ such that $\mathbf{x}^{\mathbf{u}} F \subset G$.

$L \cap \mathbb{N}^{n} \neq\{0\}(C T V 1)$

Note that:

1) $L_{\text {pure }}=\{\mathbf{0}\}$ implies $\bar{F}=\{F\}$, and the order on the equivalence classes of fibers agrees with the degree-ordering of the fibers.
2) The cardinality of \bar{F} is fixed and is determined by $L_{p u r e}$.
3) The Noetherian property of the ring guarantees that all chains of equivalence classes of fibers have a minimal element.

Definition

$$
\begin{aligned}
& I_{L,<\bar{F}}=\left(\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}} \mid \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}} \in G, \bar{G}<\bar{F}\right) \subset I_{L} . \\
& I_{L, \leq \bar{F}}=\left(\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}} \mid \mathbf{x}^{\mathbf{u}}, \mathbf{x}^{\mathbf{v}} \in G, \bar{G} \leq \bar{F}\right) \subset I_{L} .
\end{aligned}
$$

$L \cap \mathbb{N}^{n} \neq\{0\}(C T V 1)$

Recall $L_{\text {pure }}$! Denote $\sigma=\operatorname{supp}\left(L_{\text {pure }}\right)$, and $\mathbf{u}^{\sigma}=\left(u_{i}\right)_{i \neq \sigma}$.

Definition

First graph Let $G(\bar{F})$ be the graph with vertices the elements of $G\left(M_{F}\right)^{\sigma}$. The edges of $G(\bar{F})$ correspond to binomials of $I_{L,<\bar{F}}$.

Next consider the connected components of $G(\bar{F})$: these are the vertices of the second graph.

Definition

Second graph: The complete graph on the components of $G(\bar{F})$. We call this graph $\Gamma(\bar{F})$.

Consider, as before, spanning trees of $\Gamma(\bar{F})$.

True Generalization

If $L \cap \mathbb{N}^{n}=\{0\}$ then

- $\sigma=\{ \}$
- $\bar{F}=\{F\}$
- $G\left(M_{F}\right)$ is equal to F
- $I_{L,<\bar{F}}=I_{L,<\mathbf{b}}$ where \mathbf{b} is the \mathcal{A}-degree of any element in F.

Thus we obtain the same graphs.

Markov bases of pure lattice ideals

Theorem

(CTV1) $B=\mathbf{x}^{\mathbf{u}}-\mathbf{x}^{\mathbf{v}}$ belongs to a Markov basis of I_{L} if and only if B is not in $I_{L,<\overline{F_{\mathbf{x}}}}$.

Theorem

(ES95) $I_{L_{\text {pure }}}$ is a complete intersection, generated minimally by $\operatorname{rank}\left(L_{\text {pure }}\right)$ elements.

We complete this theorem by giving a description of all generating sets of $I_{L_{\text {pure }}}$ in terms of the exponents of the binomials.

Markov Bases of I_{L} (CTV1)

Theorem

A set S of binomials of I_{L} is a Markov basis of I_{L} if and only if

- for every \bar{F} the elements of S determine a spanning tree of $\Gamma(\bar{F})$ and
- the binomials of S in the equivalence class of the fiber $F_{x^{0}}$ minimally generate the lattice generated by $L \cap \mathbb{N}^{n}$.

What are the invariants of the Markov bases of I_{L} ?

Theorem

Let $S=\left\{B_{1}, \ldots, B_{s}\right\}$ be a Markov basis of I_{L}. The equivalence classes of fibers that correspond to these binomials and their multiplicity in S are uniquely determined and are invariants of I_{L}.

Markov Bases of I_{L} (CTV1)

What can we compute?

> We can compute the cardinality of a Markov basis, the Markov fibers, the indispensable fibers, the indispensable binomials, and the indispensable monomials.

Theorem

> where $\mu\left(I_{L}\right)$ is the cardinality of a Markov basis, r is the rank of $L_{\text {pure }}$, and $t(F)$ is the number of vertices of $\Gamma_{\bar{F}}$.

Markov Bases of I_{L} (CTV1)

What can we compute?
We can compute the cardinality of a Markov basis, the Markov fibers, the indispensable fibers, the indispensable binomials, and the indispensable monomials.

Theorem

$$
\mu\left(I_{L}\right)=r+\sum_{\bar{F} \neq \bar{F}_{\{1\}}}(t(\bar{F})-1),
$$

where $\mu\left(I_{L}\right)$ is the cardinality of a Markov basis, r is the rank of $L_{\text {pure }}$, and $t(\bar{F})$ is the number of vertices of $\Gamma_{\bar{F}}$.

Binomial Complete Intersection

Definition

Let L be a lattice of rank r. The lattice ideal I_{L} is called a binomial complete intersection if there exist binomials
B_{1}, \ldots, B_{r} such that $I_{L}=\left\langle B_{1}, \ldots, B_{r}\right\rangle$.
If $L \cap \mathbb{N}^{n}=\{\mathbf{0}\}$ then complete intersection lattice ideals are automatically binomial complete intersections.

When is the lattice ideal a complete intersection ideal? The problem is completely solved when L is positively graded by a series of articles: Herzog (70), Delorne(76), Stanley (77), Ishida (78), Watanabe(80), Nakajima(85), Schafer (85), Rosales and Garcia-Sanchez (95), Fischer, Morris and Shapiro (95), Scheja, Scheja and Storch (99), Morales and Thoma (05).

Mixed dominating matrices

The final conclusion of this series of articles is that I_{L} is a complete intersection if and only if the matrix M whose rows correspond to a basis of L is mixed dominating.

Definition

A matrix M is mixed dominating if every row of M has a positive and negative entry and M contains no square submatrix with this property.

Example

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
6 & 0 & -1
\end{array}\right]
$$

Complete intersections and mixed dominating matrices in the general case

We now consider arbitrary sublattices L of \mathbb{Z}^{n}.
In (CTV1) we showed that the rank L is determined by the rank of L^{σ} (which is a positively graded lattice) and the rank of $L_{\text {pure }}$. Here L^{σ} is the sublattice of $\left(\mathbb{Z}^{n}\right)^{\sigma}$ generated by the vectors \mathbf{u}^{σ}.

Theorem

$$
\operatorname{rank}(L)=\operatorname{rank}\left(L^{\sigma}\right)+\operatorname{rank}\left(L_{p u r e}\right)
$$

Theorem

(CTV1) Let $L \subset \mathbb{Z}^{n}$ be a lattice. The ideal I_{L} is binomial complete intersection if and only if there exists a basis of L^{σ} so that its vectors give the rows of a mixed dominating matrix.

Universal Gröbner basis and Graver basis

Let A be a matrix in $\mathbb{Z}^{m \times n}$. The toric ideal I_{A} is the lattice ideal $I_{L(A)}$, where $L(A)=\operatorname{ker}_{\mathbb{Z}}(A)$. We assume that $L(A) \cap \mathbb{N}^{n}=\{0\}$.

Theorem

(St 95) For any toric ideal I_{A} the following containments hold:

Universal Gröbner basis of $A \subset$ Graver basis of A

What is the relation between the universal Gröbner basis of A and the universal Markov basis of A ? What is the relation between the universal Markov basis of A and the Graver basis of A ?

Example

Let $I=\left(x_{1} x_{2}-x_{3} x_{4}, x_{5} x_{6}-x_{7} x_{8}, x_{1}^{2} x_{2}^{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8}\right)$. This generating set is not part of any reduced Gröbner basis of I.

Example

Let

$$
A=\left(\begin{array}{llllllll}
2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
4 & 0 & 4 & 0 & 3 & 3 & 3 & 3 \\
4 & 0 & 0 & 4 & 3 & 3 & 3 & 3 \\
2 & 2 & 2 & 2 & 6 & 0 & 6 & 0 \\
2 & 2 & 2 & 2 & 6 & 0 & 0 & 6
\end{array}\right)
$$

It can be shown that

$$
I_{A}=\left(x_{1} x_{2}-x_{3} x_{4}, x_{5} x_{6}-x_{7} x_{8}, x_{1}^{2} x_{2}^{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8}\right)
$$

The binomial $x_{1}^{2} x_{2}^{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8}$ does not belong to a reduced Gröbner basis of I_{A} since for any monomial order, the initial term of $x_{1} x_{2}-x_{3} x_{4}$ divides $x_{1}^{2} x_{2}^{2} x_{3} x_{4}$ while the initial term of $x_{5} x_{6}-x_{7} x_{8}$ divides $x_{5} x_{6} x_{7} x_{8}$.

Markov Polytopes

Theorem

(CKT07, DSS09) \mathbf{u} is in the universal Markov basis of A if and only if \mathbf{u}^{+}and \mathbf{u}^{-}belong to different connected components of G_{u}.

We consider the convex hulls of the connected components of G_{u}.

Definition

(CTV2) A Markov polytope is the convex hull of the elements in a connected component of this graph.

Universal Markov and universal Gröbner basis

Theorem

(StWeZi 95) $\mathbf{u} \in L$ is in the universal Gröbner basis of A if \mathbf{u} is in the Graver basis of A and $\left[\mathbf{u}^{+}, \mathbf{u}^{-}\right]$is an edge of the convex hull of all points in \mathcal{F}_{u}.

We get the following characterization:

Theorem

(CTV2) An element \mathbf{u} of the universal Markov basis of A belongs to the universal Gröbner basis of A if and only if \mathbf{u}^{+} and \mathbf{u}^{-}are vertices of two different (Markov) polytopes.

Example of Markov polytope

Example

Let A be the matrix of the previous example. Recall that $x_{1}^{2} x_{2}^{2} x_{3} x_{4}-x_{5} x_{6} x_{7} x_{8}$ is in the universal Markov basis of I_{A} but not in the universal Gröbner basis of I_{A}. Let

$$
\begin{gathered}
\mathbf{u}=(2,2,1,1,-1,-1,-1,-1) \in L . \text { Then }\left|\mathcal{F}_{\mathbf{u}}\right|=7 \text { and } \mathcal{F}_{\mathbf{u}}= \\
\left\{(3,3,0, \ldots, 0), u^{+},(1,1,2,2,0,0,0,0),(0,0,3,3,0,0,0,0)\right\} \\
\cup\left\{(0, \ldots, 0,2,2,0,0), u^{-},(0, \ldots, 0,2,2)\right\}
\end{gathered}
$$

The graph $G_{\mathbf{u}}$ has two connected components.
The Markov polytopes are line segments: \mathbf{u}^{+}and \mathbf{u}^{-}are not vertices of their Markov polytopes.

Universal Markov basis for positive toric ideals

Consider the toric ideal I_{A} such that $L(A) \cap \mathbb{N}^{n}=\{\mathbf{0}\}$. We have the following inclusions:

$$
\mathcal{S}\left(I_{A}\right) \subseteq \mathcal{M}\left(I_{A}\right) \subseteq \mathcal{G}\left(I_{A}\right) .
$$

- (St95): $\mathcal{G}\left(I_{A}\right)$ is the subset of $L(A)$ whose elements have no proper conformal decomposition.
- (HS2005+CTV3): $\mathcal{S}\left(I_{A}\right)$ is the subset of $L(A)$ whose elements have no proper semiconformal decomposition.
- (CTV3): $\mathcal{M}\left(I_{A}\right)$ is the subset of $L(A)$ whose elements have no proper strongly semiconformal decomposition.

Markov complexity $m(A)$

Let A be an arbitrary integer matrix.

- Santos, Sturmfels 2003: $g(A)$ is equal to the maximum 1-norm of an element in $\mathcal{G}(\mathcal{G}(A))$. Thus $g(A)$ is finite.
- Santos, Sturmfels 2003: $m(A) \leq g(A)$.
- Hoşten, Sullivant 2005: $m(A) \geq$ the maximum 1-norm of any element in $\mathcal{G}(\mathcal{S}(A))$.
How to compute $m(A)$ in general?

Markov complexity $m(A)$

Let A be an arbitrary integer matrix.

- Santos, Sturmfels 2003: $g(A)$ is equal to the maximum 1-norm of an element in $\mathcal{G}(\mathcal{G}(A))$. Thus $g(A)$ is finite.
- Santos, Sturmfels 2003: $m(A) \leq g(A)$.
- Hoşten, Sullivant 2005: $m(A) \geq$ the maximum 1-norm of any element in $\mathcal{G}(\mathcal{S}(A))$.

How to compute $m(A)$ in general?
So far a mystery!!!

Markov complexity for monomial curves in \mathbb{A}^{3}

Theorem

(CTV3) Let $A=\left\{n_{1}, n_{2}, n_{3}\right\}$ be a set of positive integers with $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=1$. Then $m(A)=2$ if A is complete intersection, and $m(A)=3$ if A is not complete intersection. Moreover, for any $r \geq 2$ we have $\mathcal{M}\left(A^{(r)}\right)=\mathcal{S}\left(A^{(r)}\right)$

Theorem

(CTV3) Let $A=\left\{n_{1}, n_{2}, n_{3}\right\}$ such that $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=1$ and $d_{i j}=\operatorname{gcd}\left(n_{i}, n_{j}\right)$ for all $i \neq j$. Then

$$
g(A) \geq \frac{n_{1}}{d_{12} d_{13}}+\frac{n_{2}}{d_{12} d_{23}}+\frac{n_{3}}{d_{13} d_{23}} .
$$

In particular, if n_{1}, n_{2}, n_{3} are pairwise prime then $g(A) \geq n_{1}+n_{2}+n_{3}$.

Examples

Examples

(a) Let $A=\{3,4,5\}$. Computations with 4 ti 2 show that the maximum 1-norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is $12=3+4+5$ and thus $g(A)$ equals the the lower bound of the theorem.
(b) Let $A=\{2,3,17\}$. Computations with 4 ti2 show that the maximum 1-norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is 30 and thus $g(A)=30$, while the lower bound of the theorem is $22=2+3+17$

Examples

Examples

(a) Let $A=\{3,4,5\}$. Computations with 4 ti 2 show that the maximum 1-norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is $12=3+4+5$ and thus $g(A)$ equals the the lower bound of the theorem.
(b) Let $A=\{2,3,17\}$. Computations with 4 ti 2 show that the maximum 1 -norm of the elements of $\mathcal{G}(\mathcal{G}(A))$ is 30 and thus $g(A)=30$, while the lower bound of the theorem is $22=2+3+17$.

