Algebraic properties and invariants of lattice and matrix ideals

Rafael H. Villarreal*, joint work with Hiram López, Jorge Neves, Liam O'Carroll, Francesc Planas Vilanova, and Maria Vaz Pinto

Departamento de Matemáticas
CINVESTAV-IPN, México

Meeting On Combinatorial Commutative Algebra
Levico Terme, Italy, September 8-12, 2014.

Notation

- $S=K\left[t_{1}, \ldots, t_{s}\right]$ polynomial ring over a field K
- I an ideal of S and S / I its quotient ring.
- The K-vector space of polynomials in S (resp. I) of degree at most i is denoted by $S_{\leq i}$ (resp. $I_{\leq i}$).
- The affine Hilbert function of S / I is:

$$
H_{l}^{a}(i):=\operatorname{dim}_{K}\left(S_{\leq i} / I_{\leq i}\right), \quad i=0,1,2, \ldots,
$$

- (Hilbert-Serre Theorem) There is a unique polynomial $h_{l}^{a}(t) \in \mathbb{Q}[t]$ of degree $k \geq 0$ such that

$$
h_{l}^{a}(i)=H_{l}^{a}(i) \text { for } i \gg 0 .
$$

- The positive integer

$$
\operatorname{deg}(S / I):=k!\lim _{i \rightarrow \infty} H_{l}^{a}(i) / i^{k}
$$

is the degree of S / I and k is the dimension of S / I.

Definition

- If $a=\left(a_{1}, \ldots, a_{s}\right) \in \mathbb{N}^{s}$, we set $t^{a}:=t_{1}^{a_{1}} \cdots t_{s}^{a_{s}}$.
- A binomial ideal is an ideal $I \subset S$ generated by "binomials", i.e., by polynomials of the form $t^{a}-t^{b}$.
- If $a \in \mathbb{Z}^{s}$, we can write $a=a^{+}-a^{-}$, with a^{+}, a^{-}in \mathbb{N}^{s}.
- A lattice ideal is an ideal of the form

$$
I(\mathcal{L}):=\left(t^{a^{+}}-t^{a^{-}} \mid a \in \mathcal{L}\right) \subset S,
$$

where \mathcal{L} is a lattice (subgroup) of \mathbb{Z}^{s}.

- If $P=I(\mathcal{L}) \subset S$, where $\mathcal{L}=\operatorname{ker}_{\mathbb{Z}}(A)$ for some integer matrix A, then P is called a toric ideal.

Let $\mathcal{L} \subset \mathbb{Z}^{s}$ be a lattice.

- The torsion subgroup of $\mathbb{Z}^{s} / \mathcal{L}$ is:

$$
T\left(\mathbb{Z}^{s} / \mathcal{L}\right):=\left\{\bar{x} \in \mathbb{Z}^{s} / \mathcal{L} \mid \ell \bar{x}=\overline{0} \text { for some } \ell \in \mathbb{N}_{+}\right\} .
$$

- The following hold:
(a) $\operatorname{ht}(I(\mathcal{L}))=\operatorname{rank}(\mathcal{L})$,
(b) $I(\mathcal{L})$ is unmixed,
(c) $\mathbb{Z}^{s} / \mathcal{L} \simeq \mathbb{Z}^{s-r} \oplus T\left(\mathbb{Z}^{s} / \mathcal{L}\right), r=\operatorname{rank}(\mathcal{L})$.

Theorem (O'Carroll, Planas-Vilanova, -, 2014)

Let $\mathcal{L} \subset \mathbb{Z}^{s}$ be a lattice of rank r. The following hold.
(a) If $r<s$, there is an integer matrix A of size $(s-r) \times s$ and rank $s-r$ such that $\mathcal{L} \subset \operatorname{ker}_{\mathbb{Z}}(A)$.
(b) If $r<s$ and v_{1}, \ldots, v_{s} are the columns of A, then $\operatorname{deg}(S / I(\mathcal{L}))=\frac{\left|T\left(\mathbb{Z}^{s} / \mathcal{L}\right)\right|(s-r)!\operatorname{vol}\left(\operatorname{conv}\left(0, v_{1}, \ldots, v_{s}\right)\right)}{\mid T\left(\mathbb{Z}^{s-r} / \mathbb{Z}\left\{v_{1}, \ldots, v_{s}\right\} \mid\right.}$.
(c) If $r=s$, then $\operatorname{deg}(S / I(\mathcal{L}))=\left|\mathbb{Z}^{\boldsymbol{s}} / \mathcal{L}\right|$.

- Assume $\mathbf{d}=\left(d_{1}, \ldots, d_{s}\right) \in \mathbb{N}_{+}^{s}$. Then $S=\oplus_{d=0}^{\infty} S_{d}$ has a grading induced by setting $\operatorname{deg}\left(t_{i}\right)=d_{i}$.
- A graded ideal of S is an ideal which is graded with respect to d.
- If $d_{i}=1$ for all i and $I \subset S$ is graded, then

$$
H_{l}(i):=H_{l}^{a}(i)-H_{l}^{a}(i-1)=\operatorname{dim}_{K}\left(S_{i} / I_{i}\right) .
$$

Corollary (López, -, 2013)

If $\operatorname{dim}(S / I(\mathcal{L}))=1$ and $I(\mathcal{L})$ is graded, then

$$
\left(\operatorname{gcd}\left\{d_{i}\right\}_{i=1}^{S}\right) \operatorname{deg}(S / I(\mathcal{L}))=\left(\max \left\{d_{i}\right\}_{i=1}^{S}\right)\left|T\left(\mathbb{Z}^{s} / \mathcal{L}\right)\right| .
$$

Example

If $\mathcal{L}=\operatorname{ker}_{\mathbb{Z}}(1,2,3)$, then

$$
\operatorname{deg}(S / I(\mathcal{L}))=3
$$

Lemma

Let I be a graded binomial ideal and let $V\left(I, t_{i}\right)$ be the affine variety defined by the ideal $\left(I, t_{i}\right)$.
If $V\left(I, t_{i}\right)=\{0\}$ for $i=1, \ldots, s$, then $\operatorname{dim}(S / I)=1$.

Example

If I is the ideal of $S=K\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ generated by

$$
\begin{aligned}
& f_{1}=t_{1}^{3}-t_{2} t_{3} t_{4}, \\
& f_{2}=t_{2}^{3}-t_{1} t_{3} t_{4}, \\
& f_{3}=t_{3}^{3}-t_{1} t_{2} t_{4}, \\
& t_{4}=t_{4}^{3}-t_{1} t_{2} t_{3},
\end{aligned}
$$

then $V\left(I, t_{i}\right)=\{0\}$ for all i. Hence $\operatorname{dim}(S / I)=1$.

Theorem (O'Carroll, Planas-Vilanova, -, 2014)

Let $I \subset S$ be a graded binomial ideal. Then $/$ is a lattice ideal of dimension 1 if and only if
(a) $V\left(I, t_{i}\right)=\{0\}$ for $i=1, \ldots, s$, and
(b) I is an unmixed ideal.

Condition (b) can be replaced by
$\left(b_{1}\right)$ I is Cohen-Macaulay, or by
$\left(\mathrm{b}_{2}\right) \operatorname{Hull}(I)=I$.
$\operatorname{Hull}(I)=$ intersection of the isolated primary components.

Definition

A matrix ideal is an ideal of the form

$$
I(L)=\left(t^{a_{i}^{+}}-t^{a_{i}^{-}} \mid i=1, \ldots, m\right) \subset S,
$$

where the a_{i} 's are the columns of an integer matrix L of size $s \times m$. Note that $I(L)$ is graded if and only if $\mathbf{d} L=0$.

Example

$$
L=\left(\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& I(L)=\left(t_{1}^{2}-t_{2} t_{3}, t_{2}-t_{3}, t_{3}-t_{2}\right), \quad V\left(I(L), t_{i}\right)=\{0\} \forall i, \\
& I\left(L^{\top}\right)=\left(t_{1}^{2}-1, t_{2}-t_{1} t_{3}, t_{3}-t_{1} t_{2}\right), \quad 0 \notin V\left(I\left(L^{\top}\right), t_{1}\right) .
\end{aligned}
$$

Definition

A graded ideal $I \subset S$ is a complete intersection if I is generated by ht (I) homogeneous polynomials.

Problem

Characterize in algebraic and geometric terms the complete intersection matrix ideals of dimension 1.

Theorem (López, -, 2013)

A graded lattice ideal $I(\mathcal{L}) \subset S$ of dimension 1 is a complete intersection if and only if there is an integer matrix L of size $s \times(s-1)$ with column vectors a_{1}, \ldots, a_{s-1} such that
(a) $V\left(I(L), t_{i}\right)=\{0\}$ for all i, and
(b) $\mathcal{L}=\mathbb{Z}\left\{a_{1}, \ldots, a_{s-1}\right\}$.

Proof. $\Rightarrow)$ If $I(\mathcal{L})=\left(\left\{t_{a_{i}^{+}}-t^{a_{i}^{-}}\right\}_{i=1}^{s-1}\right)$, then (b) holds. If L is the matrix with column vectors a_{1}, \ldots, a_{s-1}, then (a) holds.
$\Leftrightarrow \mathrm{By}(\mathrm{a}), \operatorname{ht}(I(L))=s-1$. Hence $I(L)$ is a c.i. and by an earlier result $I(L)$ is a lattice ideal. We claim that $I(L)=I(\mathcal{L})$. The inclusion " \subset " follows from (b). There is t^{δ} such that $t^{\delta} I(\mathcal{L}) \subset I(L)$. Thus $I(\mathcal{L}) \subset I(L)$.

The next corollary follows using a result of Katsabekis, Morales and Thoma [J. Algebra 324 (2010)].

Corollary

If $\operatorname{char}(K)=p>0$ and $I \subset S$ is a graded lattice ideal of dimension 1 , then there are binomials g_{1}, \ldots, g_{r} such that

$$
\operatorname{rad}(I)=\operatorname{rad}\left(g_{1}, \ldots, g_{r}\right),
$$

where r is the height of I.

Graded matrix ideals satisfying $V\left(I, t_{i}\right)=\{0\}$

Proposition (O'Carroll, Planas-Vilanova, -, 2014)

Let $I=I(L)$ be a graded matrix ideal and \mathcal{L} the lattice spanned by the columns of L. Suppose $V\left(I, t_{i}\right)=\{0\} \forall i$.
(a) If I is unmixed, then $I=I(\mathcal{L})$.
(b) If I is not unmixed, then $I=I(\mathcal{L}) \cap \mathfrak{q}$, where \mathfrak{q} is an m-primary component of I.
(c) $\left(\operatorname{gcd}\left\{d_{i}\right\}_{i=1}^{s}\right) \operatorname{deg}(S / I)=\max _{i}\left\{d_{i}\right\}\left|T\left(\mathbb{Z}^{s} / \mathcal{L}\right)\right|$.

Definition

Let $a_{i, j} \in \mathbb{N}, i, j=1, \ldots, s$, and let L be an $s \times s$ matrix of the following special form:

$$
L=\left(\begin{array}{cccc}
a_{1,1} & -a_{1,2} & \cdots & -a_{1, s} \\
-a_{2,1} & a_{2,2} & \cdots & -a_{2, s} \\
\vdots & \vdots & \cdots & \vdots \\
-a_{s, 1} & -a_{s, 2} & \cdots & a_{s, s}
\end{array}\right) .
$$

The matrix L is called a pure binomial matrix ($P B$ matrix) if $a_{j, j}>0$ for all j, and for each row and each column of L at least one off-diagonal entry is non-zero.

The Laplacian matrix of a graph is a PB matrix.

Next, we study PB matrices using algebraic graph theory.

Definition

Let $B=\left(b_{i, j}\right)$ be an $s \times s$ real matrix. The underlying digraph of B, denoted by G_{B}, has vertex set $\left\{t_{1}, \ldots, t_{s}\right\}$, with an arc from t_{i} to t_{j} if and only if $b_{i, j} \neq 0$. If $b_{i, i} \neq 0$, we put a loop at vertex t_{i}. If B is a PB matrix, loops in G_{B} are omitted.

A digraph is strongly connected if for any two vertices t_{i} and t_{j} there is a directed path form t_{i} to t_{j} and a direct path from t_{j} to t_{i}.

Examples of underlying digraphs

$$
\begin{aligned}
& L=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \\
& L=\left[\begin{array}{ccccc}
4 & -1 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 2 & -1 & 0 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& L \cdot(1,1,1,1,1)^{\top}=0 \\
& \\
& \frac{\text { strongly }}{\frac{\text { digraph }}{\text { strongeted. }}}
\end{aligned}
$$

Duality Theorem (O'Carroll, Planas-Vilanova, -, 2014)

Let L be a PB matrix of size $s \times s$ such that $\mathbf{d} L=0$ for some $\mathbf{d} \in \mathbb{N}_{+}^{s}$.
(a) If G_{L} is strongly connected, then $\operatorname{rank}(L)=s-1$ and there is \mathbf{c} in \mathbb{N}_{+}^{s} such that $L \mathbf{c}^{\top}=0$.
(b) The following conditions are equivalent:
$\left(b_{1}\right) G_{L}$ is strongly connected.
(b) $V\left(I(L), t_{i}\right)=\{0\}$ for all i.
$\left(\mathrm{b}_{3}\right) L_{i, j}>0 \forall i, j ; \operatorname{adj}(L)=\left(L_{i, j}\right)$ is the adjoint of L.

Example

Let L be the following PB matrix and $\operatorname{adj}(L)$ its adjoint:

$$
\begin{gathered}
L=\left(\begin{array}{rrrrr}
4 & -1 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 & -1 \\
0 & -1 & 2 & -1 & 0 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & 0 & 0 & 0 & 1
\end{array}\right), \\
\operatorname{adj}(L)=\left(\begin{array}{rrrrr}
20 & 15 & 25 & 15 & 50 \\
20 & 15 & 25 & 15 & 50 \\
20 & 15 & 25 & 15 & 50 \\
20 & 15 & 25 & 15 & 50 \\
20 & 15 & 25 & 15 & 50
\end{array}\right) .
\end{gathered}
$$

By last theorem, we get $V\left(I(L), t_{i}\right)=\{0\}$ for all i and G_{L} is strongly connected.

Complementing a result of Herzog

Theorem (O'Carroll, Planas-Vilanova, -, 2014)

If $S=K\left[t_{1}, t_{2}, t_{3}\right]$, then I is a graded lattice ideal of S of dimension 1 if and only if I is the matrix ideal of a 3×3 $P B$ matrix L such that $L 1^{\top}=0$.

This result is due to Herzog [Manuscripta Math., 1970] when I is the toric ideal

$$
I=\left(t^{a^{+}}-t^{a^{-}} \mid a \in \operatorname{ker}_{\mathbb{Z}}\left(d_{1}, d_{2}, d_{3}\right)\right)
$$

of the monomial space curve parameterized by $y_{1}^{d_{1}}, y_{1}^{d_{2}}, y_{1}^{d_{3}}$, where d_{1}, d_{2}, d_{3} are positive integers.

Example

Let L be the PB matrix

$$
L=\left(\begin{array}{rrr}
4 & -2 & -2 \\
-1 & 4 & -3 \\
-2 & -2 & 4
\end{array}\right)
$$

Since $L 1^{\top}=0$, by the last theorem we get that

$$
I(L)=\left(t_{1}^{4}-t_{2} t_{3}^{2}, t_{2}^{4}-t_{1}^{2} t_{3}^{2}, t_{1}^{2} t_{2}^{3}-t_{3}^{4}\right)
$$

is a graded lattice ideal of dimension 1 which is graded with respect to $\mathbf{d}=(5,6,7)$.
The degree of $S / I(L)$ is 14 . If $K=\mathbb{Q}$, then $I=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$, where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are prime ideals of degree 7 .

Laplacian matrices and ideals

Let G be a connected simple graph, where $V=\left\{t_{1}, \ldots, t_{s}\right\}$ is the set of vertices, E is the set of edges, and let w be a weight function

$$
w: E \rightarrow \mathbb{N}_{+}, \quad e \mapsto w_{e} .
$$

Let $E\left(t_{i}\right)$ be the set of edges incident to t_{i}. The Laplacian matrix $L(G)$ of G is the $s \times s$ matrix whose (i, j)-entry $L(G)_{i, j}$ is given by

$$
L(G)_{i, j}:= \begin{cases}\sum_{e \in E\left(t_{i}\right)} w_{e} & \text { if } i=j, \\ -w_{e} & \text { if } i \neq j \text { and } e=\left\{t_{i}, t_{j}\right\} \in E, \\ 0 & \text { otherwise. }\end{cases}
$$

Notice that $L(G)$ is symmetric, $1 L(G)=0$ and $\operatorname{rank}(L(G))=s-1$.

Weighted graphs as multigraphs

$$
L(G)=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
$$

(i, j) entry of Adjoint $=8$

$$
L(G)=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 8 & -3 & -4 \\
-2 & -3 & 6 & -1 \\
0 & -4 & -1 & 5
\end{array}\right]
$$

$(1,2)$ entry of Adjoint $=67$

We can regard the weighted graph G as $\{a$ multigraph (each edge 1 e occurs we times)

Definition

- The matrix ideal I_{G} of $L(G)$ is called the Laplacian ideal of the graph G.
- If \mathcal{L} is the lattice generated by the columns of $L(G)$, the group

$$
K(G):=T\left(\mathbb{Z}^{s} / \mathcal{L}\right)
$$

is called the critical group or the sandpile group of G.

- If G is connected, then $\operatorname{rank}(\mathcal{L})=\operatorname{ht}\left(I_{G}\right)=s-1$.
- The structure, as a finite abelian group, of $K(G)$ is only known for a few families of graphs.

Theorem (the Matrix-Tree Theorem, Cayley (1889))

If G is regarded as a multigraph (where each edge e occurs w_{e} times), then the number of spanning trees of G is the (i, j)-entry of the adjoint matrix of $L(G)$ for any (i, j).

The order of $T\left(\mathbb{Z}^{s} / \mathcal{L}\right)$ is the gcd of all ($s-1$)-minors of $L(G)$. Hence the order of $K(G)=T\left(\mathbb{Z}^{s} / \mathcal{L}\right)$ is the number of spanning trees of G.

THE MATRIX-TREE THEOREM

$$
L(G)=\left[\begin{array}{ccc}
3 & -1 & -2 \\
-1 & 2 & -1 \\
-2 & -1 & -3
\end{array}\right]
$$

G has 5 spanning trees

Proposition

Let G be a connected graph, $I_{G} \subset S$ its Laplacian ideal, \mathcal{L} the lattice spanned by the columns of $L(G)$. Then:
(a) $V\left(I_{G}, t_{i}\right)=\{0\}$ for all i.
(b) $\operatorname{deg}\left(S / I_{G}\right)=\operatorname{deg}(S / I(\mathcal{L}))=|K(G)|$.
(c) $\operatorname{Hull}\left(I_{G}\right)=I(\mathcal{L})$.
(d) If $\operatorname{deg}_{G}\left(t_{i}\right) \geq 3$ for all i, then I_{G} is not a lattice ideal.
(e) If $\operatorname{deg}_{G}\left(t_{i}\right) \geq 2$ for all i, then I_{G} is not a complete intersection.
(f) If $G=\mathcal{K}_{s}$ is a complete graph, then $\operatorname{deg}\left(S / I_{G}\right)=s^{s-2}$.

Example

Let G be the complete graph on 3 vertices. Then

$$
\begin{gathered}
L(G)=\left(\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) \\
I_{G}=\left(t_{1}^{2}-t_{2} t_{3}, t_{2}^{2}-t_{1} t_{3}, t_{3}^{2}-t_{1} t_{2}\right), \quad V\left(I_{G}, t_{i}\right)=\{0\} \forall i .
\end{gathered}
$$

I_{G} is not a complete intersection, is a lattice ideal, is not a prime ideal, has degree 3 and dimension 1.

Vanishing ideals over finite fields

Let $K=\mathbb{F}_{q}$ be a finite field with q elements and X a subset of a projective space \mathbb{P}^{s-1} over K.

The following family arises in algebraic coding theory.

Proposition (Vaz Pinto, Neves, -, 2013)

The vanishing ideal $I(X)$ is a lattice ideal of S if and only if

$$
X=\left\{\left[\left(x^{v_{1}}, \ldots, x^{V_{s}}\right)\right] \mid x_{i} \in K^{*}=K \backslash\{0\} \forall i\right\} \subset \mathbb{P}^{s-1},
$$

for some monomials $x^{v_{i}}:=x_{1}^{v_{i j}} \cdots x_{n}^{v_{i n}}, \quad i=1, \ldots, s$.

In what follows we assume that X is a subset of \mathbb{P}^{S-1} parameterized by monomials:

$$
X=\left\{\left[\left(x^{v_{1}}, \ldots, x^{v_{s}}\right)\right] \mid x_{i} \in K^{*}=K \backslash\{0\} \forall i\right\} \subset \mathbb{P}^{s-1} .
$$

Some properties of $I(X)$

(b) $I(X)=\left(\left\{t_{i}-x^{v_{i}} Z\right\}_{i=1}^{s} \cup\left\{x_{i}^{q-1}-1\right\}_{i=1}^{n}\right) \cap S$.
(c) $I(X)=I(\mathcal{L})$ for some lattice \mathcal{L} of \mathbb{Z}^{s} of rank $s-1$.
(d) $\operatorname{deg}\left(S / I(X)=\left|T\left(\mathbb{Z}^{s} / \mathcal{L}\right)\right|\right.$.
(e) If $X^{v_{1}}, \ldots, X^{v_{s}}$ are square-free, then $I(X)$ is a complete intersection if and only if X is a projective torus.

It is usual to denote $H_{l(X)}$ simply by H_{X}.

- The degree of $S / I(X)$ is $|X|$.
- The least integer $r \geq 0$ such that $H_{X}(d)=|X|$ for $d \geq r$ is called the regularity of $S / I(X)$ and is denoted by $\operatorname{reg}(S / I(X))$.

Parameterized linear codes arising from X

Definition

Let $X=\left\{\left[P_{1}\right], \ldots,\left[P_{m}\right]\right\}$ and let $f_{0}\left(t_{1} \ldots, t_{s}\right)=t_{1}^{d}$, where $d \geq 1$. The linear map of K-vector spaces:

$$
\mathrm{ev}_{d}: S_{d} \rightarrow K^{|X|}, \quad f \mapsto\left(\frac{f\left(P_{1}\right)}{f_{0}\left(P_{1}\right)}, \ldots, \frac{f\left(P_{m}\right)}{f_{0}\left(P_{m}\right)}\right)
$$

is called an evaluation map. Notice that $\operatorname{ker}\left(\mathrm{ev}_{d}\right)=I(X)_{d}$.

- The image of ev_{d}, denoted by $C_{X}(d)$, is a linear code
- $C_{X}(d)$ is called a parameterized code of order d.

Definition

The basic parameters of the linear code $C_{X}(d)$ are:

- $\operatorname{dim}_{K} C_{X}(d)=H_{X}(d)$, the dimension,
- $|X|=\operatorname{deg}(S / I(X))$, the length,
- $\delta_{X}(d):=\min \left\{\|v\|: 0 \neq v \in C_{X}(d)\right\}$, the minimum distance, where $\|v\|$ is the number of non-zero entries of v.

$$
\delta_{X}(d)=1 \text { for } d \geq \operatorname{reg}(S / I(X)) .
$$

Main Problem:

Find formulas, in terms of n, s, q, d, and the "combinatorics" of $x^{v_{1}}, \ldots, x^{v_{s}}$, for the basic parameters:
(a) $H_{X}(d)$,
(b) $\operatorname{deg}(S / I(X))$,
(c) $\delta_{X}(d)$,
(d) $\operatorname{reg}(S / I(X))$.

Formulas for $(a)-(d)$ are known when:

- (Sarmiento, Vaz Pinto, -, 2011) X is a projective torus.
- (López, Rentería, -, 2014) X is a set parameterized by $x_{1}^{d_{1}}, \ldots, x_{s}^{d_{s}}, 1$, where $d_{i} \in \mathbb{N}_{+}$for al i

Example

If $X=\left\{\left[\left(x_{1}^{90}, x_{2}^{36}, x_{3}^{20}, 1\right)\right] \mid x_{i} \in \mathbb{F}_{181}^{*}\right.$ for $\left.i=1,2,3\right\}$, then $\operatorname{reg}\left(K\left[t_{1}, \ldots, t_{4}\right] / I(X)\right)=13$.

The basic parameters of the family $\left\{C_{X}(d)\right\}_{d \geq 1}$ are:

d	1	2	3	4	5	6	7	8	9	10	11	12	13
$\|X\|$	90	90	90	90	90	90	90	90	90	90	90	90	90
$H_{X}(d)$	4	9	16	25	35	45	55	65	74	81	86	89	90
$\delta_{X}(d)$	45	36	27	18	9	8	7	6	5	4	3	2	1

Definition (Parameterizations arising from graphs)

Let G be a graph with vertices x_{1}, \ldots, x_{n}. The set parameterized by G is the set X parameterized by all $x_{i} x_{j}$ such that $\left\{x_{i}, x_{j}\right\}$ is an edge of G.

Example

Let G be the graph:

Then $X=\left\{\left[\left(x_{1} x_{2}, x_{2} x_{3}, x_{1} x_{3}\right)\right] \mid x_{i} \in K^{*}\right.$ for all $\left.i\right\} \subset \mathbb{P}^{2}$.

Remark

Let G be a connected graph.

- Formulas for the basic parameters of $C_{X}(d)$ are known for complete bipartite graphs.
- For complete graphs, no formula is known for the minimum distance.

Next we show a formula for the degree for any graph G.

Theorem (Neves, Vaz Pinto,-, 2012)

Let G be a graph with n vertices, c connected components and γ non-bipartite components. Then

$$
\operatorname{deg}(S / I(X))=\left\{\begin{array}{l}
\left(\frac{1}{2}\right)^{\gamma-1}(q-1)^{n-c+\gamma-1}, \text { if } \gamma \geq 1, q \text { odd } \\
(q-1)^{n-c+\gamma-1}, \text { if } \gamma \geq 1, q \text { even }, \\
(q-1)^{n-c-1}, \text { if } \gamma=0
\end{array}\right.
$$

THE END

