## Minimal Triangulations \& <br> <br> Oraded Betti Numbers

 <br> <br> Oraded Betti Numbers}Satoshi Murai (Osaka University)

Meeting On Combinatorial
Commutative Algebra 2014
summary of slide is available at my homepage

## Minimal Triangulations

## Question

Let $M$ be a topological manifold. How many vertices do we need to triangulate $M$ ? In particular, what is the smallest number of the vertices?

## Minimal Triangulations

## Question

Let $M$ be a topological manifold. How many vertices do we need to triangulate M ? In particular, what is the smallest number of the vertices?


Torus $S^{1} \times S^{1}$


9 vertex triangulation

## Minimal Triangulations

## Question

Let $M$ be a topological manifold. How many vertices do we need to triangulate M ? In particular, what is the smallest number of the vertices?


Torus $S^{1} \times S^{1}$


8 vertex triangulation

## Minimal Triangulations

## Question

Let $M$ be a topological manifold. How many vertices do we need to triangulate M ? In particular, what is the smallest number of the vertices?


7 vertex triangulation

## Minimal triangulations of closed surfaces

## Closed surfaces (2-manifolds)

The topological type of a connected closed surface are completely classified. They are either (1)
(2)

## Closed surfaces (2-manifolds)

The topological type of a connected closed surface are completely classified. They are either
(1) $S_{g}=\left(S^{1} \times S^{1}\right) \# \cdots \#\left(S^{1} \times S^{1}\right), \quad\left(S_{0}=S^{2}\right)$

(2)

## Closed surfaces (2-manifolds)

The topological type of a connected closed surface are completely classified. They are either
(1) $S_{g}=\left(S^{1} \times S^{1}\right) \# \cdots \#\left(S^{1} \times S^{1}\right), \quad\left(S_{0}=S^{2}\right)$

(2) $N_{g}=\left(\mathbb{R} P^{2}\right) \# \cdots \#\left(\mathbb{R} P^{2}\right)$


## Minimal triangulations of surfaces

$M$ : connected closed surface
Theorem (Heawood 1890)
If an $n$ vertex triangulation of $M$ exists, then

$$
\text { (1) } \quad\binom{n-3}{2} \geq 3 \cdot(2-\chi(M))
$$

Theorem (Ringel '55, Jungerman-Ringel '80)
If $M \neq S_{2}, N_{2}$ or $N_{3}$ then an $n$ vertex triangulation of $M$ exists if and only if (1) holds.

## Gxample 1

$$
S_{1}=S^{1} \times S^{1}:
$$



For $S_{1}$, Heawood's inequality is

$$
\binom{n-3}{2} \geq 3 \times 2=6
$$

Minimal triangulation has 7 vertices. $\left(\binom{4}{2}=6\right)$

## Gxample 2

## $S_{100}=\left(S^{1} \times S^{1}\right)^{\# 100}: \nprec \not \omega$

For $S^{100}$, Heawood's inequality is

$$
\binom{n-3}{2} \geq 3 \times 200=600
$$

Minimal triangulation has 39 vertices.
$\left(\binom{35}{2}=595,\binom{36}{2}=630\right)$

## Minimal triangulations of closed surfaces

## $M$ : connected closed surface

## Theorem (Heawood 1890)

If an $n$ vertex triangulation of $M$ exists, then
(1) $\quad\binom{n-3}{2} \geq 3 \cdot(2-\chi(M))$.

Theorem (Ringel '55, Jungerman-Ringel '80)
If $M \neq S_{2}, N_{2}$ or $N_{3}$ then an $n$ vertex triangulation of $M$ exists if and only if (1) holds.

# Lower bounds of the number of the vertices \& Upper bounds of graded Betti numbers 

## Notation 1

- $\Delta$ : (abstract) simplicial complex with $n$ vertices
- $M$ : connected closed $d$-mfd
- $|\Delta|$ : geometric realization of $\Delta$
- $\Delta$ is a triangulation of $M \Leftrightarrow|\Delta| \cong_{\text {homeo }} M$
- $M$ is orientable $\Leftrightarrow H_{d}(M ; \mathbb{Z}) \cong \mathbb{Z}$


## Notation 2

- $\operatorname{lk}_{\Delta}(v)=\{F \in \Delta: v \notin F,\{v\} \cup F \in \Delta\}$
- $\Delta$ is a combinatorial triangulation of $M$ $\Leftrightarrow|\Delta| \cong_{\text {homeo }} M$ and each $\mathrm{lk}_{\Delta}(v)$ is a PL sphere.
- $\Delta$ is a $\mathbb{F}$-homology manifold
$\Leftrightarrow$ pure \& each $\mathrm{lk}_{\Delta}(v)$ is Gorenstein* (over $\mathbb{F}$ )

Combinatorial Triangulations

Triangulations of closed mfds

Homology manifolds

## Generalizations of Heawood's inequality

## Conjecture (Kühnel)

If an $n$ vertex (combinatorial) triangulation of a connected closed d-mfd $M$ exists, then

$$
\begin{aligned}
& \binom{n-d+j-2}{j+1} \geq\binom{ d+2}{j+1} \times\left(\operatorname{dim}_{\mathbb{F}} H_{j}(M ; \mathbb{F})\right) \\
& \text { for } j<\frac{d}{2} \text {, and }(\text { when } d \text { is even) } \\
& \binom{n-\frac{d}{2}-2}{\frac{d}{2}+1} \geq\binom{ d+2}{\frac{d}{2}+1} \times \frac{1}{2}\left(\operatorname{dim}_{\mathbb{F}} H_{\frac{d}{2}}(M ; \mathbb{F})\right)
\end{aligned}
$$

Remark: Heawood's inequality is the special case when $d=2, j=1, \mathbb{F}=\mathbb{Z} / 2 \mathbb{Z}$.

## Known cases

Kühnel's Conjecture holds for

- $d=4, j=2$ (Kühnel '90).
- $d=3, j=1$ (Bagchi '14).
- $j=\frac{d}{2}, \underline{M \text { orientable or } \operatorname{char}(\mathbb{F})=2 \text {. }}$
- $j=1, M$ orientable or $\operatorname{char}(\mathbb{F})=2$.
- $M$ orientable, $\operatorname{char}(\mathbb{F})=0$, each $\mathrm{lk}_{\Delta}(v)$ is a polytope. (Novik-Swartz '09).


## Result

## Theorem (M)

Kühnel's conjecture holds for the following cases;

- $j=1$
- $j=\frac{d}{2}$ (d: even)
- triangulations $\Delta$ such that each $\mathrm{lk}_{\Delta}(v)$ is a polytope when $\operatorname{char}(\mathbb{F})=0$.


## Idea of Proof

$\mathbb{F}[\Delta]=\mathbb{F}\left[x_{v}: v \in \operatorname{Vert}(\Delta)\right] / I_{\Delta}:$ Stanley-Reisner ring $I_{\Delta}=\left(x_{v_{1}} x_{v_{2}} \cdots x_{v_{k}}:\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \notin \Delta\right)$
$\beta_{i, j}\left(I_{\Delta}\right)=\operatorname{dim}_{\mathbb{F}} \operatorname{Tor}_{i}\left(I_{\Delta}, \mathbb{F}\right)_{j}$ : graded Betti number

## Observation

Let $n_{v}$ be the num of vertices of $\mathrm{lk}_{\Delta}(v)$. If

$$
\beta_{i, i+j+1}\left(I_{\operatorname{lk}_{\Delta}(v)}\right) \leq \beta_{i, i+j+1}\left(\left(x_{1}, \ldots, x_{n_{v}-d-1}\right)^{j+1}\right)
$$

for any $i$ and for any vertex $v$, then

$$
\binom{n-d-1}{2} \geq\binom{ d+2}{2} \times\left(\operatorname{dim}_{\mathbb{F}} H_{j}(M ; \mathbb{F})\right)
$$

## Question

## Question

Let $\Delta$ be a Gorenstein* simplicial complex of dimension $d-1$ with $n$ vertices. Does

$$
\beta_{i, i+j}\left(I_{\Delta}\right) \leq \beta_{i, i+j}\left(\left(x_{1}, \ldots, x_{n-d-1}\right)^{j}\right)
$$

holds for all $i$ and $j \leq \frac{d+1}{2}$ ?

- The bounds hold for $j=2$.
- The bounds hold for simplicial polytopes $(\operatorname{char}(\mathbb{F})=0)$. (essentially Migliore-Nagle '03)


## Tight triangulations \& Linear resolutions

## Definition

$\Delta_{W}=\{F \in \Delta: F \subset W\}:$ induced subcomplex

## Definition

A simplicial complex $\Delta$ on $V$ is $\mathbb{F}$-tight if a natural map induced from the inclusion

$$
\imath: H_{i}\left(\Delta_{W} ; \mathbb{F}\right) \rightarrow H_{i}(\Delta ; \mathbb{F})
$$

is injective for all $i$ and $W \subset V$.

We say that $\Delta$ is tight if it is $\mathbb{F}$-tight for some field $\mathbb{F}$.

## Properties

$$
\mathbb{F} \text {-tight } \Rightarrow \imath: H_{0}\left(\Delta_{W} ; \mathbb{F}\right) \rightarrow H_{0}(\Delta ; \mathbb{F}) \text { injective }{ }^{\forall} i,{ }^{\forall} W
$$

- connected \& tight $\Rightarrow$ neighborly

$$
\left({ }^{\forall} u, v: \text { vertices } \Rightarrow\{u, v\} \in \Delta\right)
$$

- If $\Delta$ is a triangulation of a closed surface, then
$\Delta$ is tight $\Leftrightarrow \Delta$ is neighborly


## Properties

Tight triangulation of $\mathbb{R} P^{2}$


Tight triangulation of $S^{1} \times S^{1}$


- If $\Delta$ is a triangulation of a closed surface, then $\Delta$ is tight $\Leftrightarrow \Delta$ is neighborly


## Big problem

## Conjecture (Kühnel-Lutz '99)

A tight combinatorial triangulation of a closed manifold $M$ has the smallest number of vertices among all combinatorial triangulations of $M$.

## Motivation of the conjecture

## Theorem

An $n$ vertex triangulation of a closed surface (2-mfd) $M$ satisfies

$$
\binom{n-3}{2}=3(2-\chi(M))
$$

if and only if it is tight

- Minimal triangulation of $S_{1}=S^{1} \times S^{1}$ is tight.
- Minimal triangulation of $S_{100}$ is not tight.


## Target Problem

## Conjecture (Kühnel-Lutz '99)

A combinatorial triangulation of $S^{i} \times S^{j}(i \leq j)$ is tight if and only if it has $i+2 j+4$ vertices.

## Theorem (Brehm-Kühnel '86)

A combinatorial triangulation of $S^{i} \times S^{j}$ has at least $i+2 j+4$ vertices.

## Result

## Conjecture (Kühnel-Lutz '99)

A combinatorial triangulation of $S^{i} \times S^{j}(i \leq j)$ is tight if and only if it has $i+2 j+4$ vertices.

## Theorem (M)

Suppose $j>2 i$. If a combinatorial triangulation of $S^{i} \times S^{j}$ is tight, then it has exactly $i+2 j+4$ vertices.

## Tighthess \& Bett numbers

$\Delta$ : simplicial complex on $V$
$\sigma_{k}(\Delta ; \mathbb{F})=\sum_{W \subset V} \frac{1}{\binom{\# V}{\# W}} \operatorname{dim}_{\mathbb{F}} \widetilde{H}_{k-1}\left(\Delta_{W} ; \mathbb{F}\right)$
$\mu_{k}(\Delta ; \mathbb{F})=\sum_{v \in V} \frac{\sigma_{k-1}\left(\mathrm{lk}_{\Delta}(v) ; \mathbb{F}\right)}{\left(\text { num of vert of } \mathrm{k}_{\Delta}(v)\right)+1}$
Theorem (Bagchi-Datta '14, Bagchi '14)
A simplicial complex $\Delta$ is $\mathbb{F}$-tight if and only if $\operatorname{dim}_{\mathbb{F}} H_{k}(\Delta ; \mathbb{F})=\mu_{k}(\Delta ; \mathbb{F})$ for all $k$.

## Tightness \& Bett numbers

$\Delta$ : simplicial complex on $V$

$$
\sigma_{k}(\Delta ; \mathbb{F})=\sum_{\ell=k}^{n} \frac{1}{\binom{n}{\ell}} \beta_{\ell-k,(\ell-k)+k}(\mathbb{F}[\Delta])
$$

$$
n=\# V
$$

Theorem (Hochster's formula)

$$
\beta_{i, j}(\mathbb{F}[\Delta])=\sum_{\# W=j} \operatorname{dim}_{\mathbb{F}} \widetilde{H}_{i-1}\left(\Delta_{W} ; \mathbb{F}\right)
$$

## Tighthess \& Bett numbers

$\Delta$ : simplicial complex on $V$
$\sigma_{k}(\Delta ; \mathbb{F})=\sum_{\ell=k}^{n} \frac{1}{\binom{n}{\ell}} \beta_{\ell-k,(\ell-k)+k}(\mathbb{F}[\Delta])$
$\mu_{k}(\Delta ; \mathbb{F})=\sum_{v \in V} \frac{\sigma_{k-1}\left(\mathrm{lk}_{\Delta}(v) ; \mathbb{F}\right)}{\left(\text { num of vert of } \mathrm{lk}_{\Delta}(v)\right)+1}$
Theorem (Bagchi-Datta '14, Bagchi '14)
A simplicial complex $\Delta$ is $\mathbb{F}$-tight if and only if $\operatorname{dim}_{\mathbb{F}} H_{k}(\Delta ; \mathbb{F})=\mu_{k}(\Delta ; \mathbb{F})$ for all $k$.

## Observation

$$
I_{\langle k\rangle}=(f \in I: \operatorname{deg} f=k)
$$

Observation
Let $\Delta$ be a tight combinatorial triang. of $S^{i} \times S^{j}$. If $\left(I_{\mathrm{k}_{\Delta}(v)}\right)_{\langle i+1\rangle}$ has a linear resolution for each vertex $v$, then it has exactly $i+2 j+4$ vertices.

Lemma
Suppose $j>2 i$. For any tight triang. $\Delta$ of $S^{i} \times S^{j}$, $\left(I_{\mathrm{lk}_{\Delta}(v)}\right)_{\langle i+1\rangle}$ has a linear resolution for each vertex $v$.

## Why link has Inear resolution?

$\Delta:$ tight triangulation of $S^{i} \times S^{j}(j>2 i)$

Betti
Diagram of $\mathbb{F}\left[\mathrm{lk}_{\Delta}(v)\right]$


# Why Inear resolution determine the number of the vertices? 

## Assumption:

- $\Delta$ is an combinatorial triangulaiton of $S^{i} \times S^{j}$.
- $\left(I_{\mathrm{lk}_{\Delta}(v)}\right)_{\langle i+1\rangle}$ has a linear resolution.
$\Rightarrow\left(I_{\mathrm{lk}_{\Delta}(v)}\right)_{\langle i+1\rangle}$ is Cohen-Macaulay
$\beta_{\ell, k}\left(\mathbb{F}\left[\mathrm{lk}_{\Delta}(v)\right]\right)$ only depends on $i, j, n$.
$\Rightarrow$ use $1=\operatorname{dim}_{\mathbb{F}} H_{i}\left(S^{i} \times S^{j} ; \mathbb{F}\right)=\mu_{i}(\Delta ; \mathbb{F})$.

Sum of $\beta_{k, k+i}\left(\mathbb{F}\left[\mathrm{lk}_{\Delta}(v)\right]\right)$.
Only depends on $n, i$ and $j$.

## Questions

## Question

Let $\Delta$ be a tight triangulation of $S^{i} \times S^{j}(i<j)$. Is it true that $\left(I_{\mathrm{lk}_{\Delta}(v)}\right)_{\langle i+1\rangle}$ has a linear resolution?

## Question

Let $\Delta$ be a tight homology 3-mfd. Does $\left(I_{\mathrm{lk}_{\Delta}(v)}\right)_{\langle 2\rangle}$ has a 2-linear resolution?

## Unfortunate Fact

- Existence of tight triangulations are know for

$$
S^{1} \times S^{j}(j: \text { odd }), S^{2} \times S^{3}, S^{3} \times S^{3}
$$

- Non-Existence of tight triangulations are known for

$$
S^{1} \times S^{j}(j: \text { even }), S^{2} \times S^{2}
$$

Please find tight triangulations of $S^{2} \times S^{j}(j \geq 5)$

## Thank you very much for your attention

