Minimal Triangulations & Graded Betti Numbers

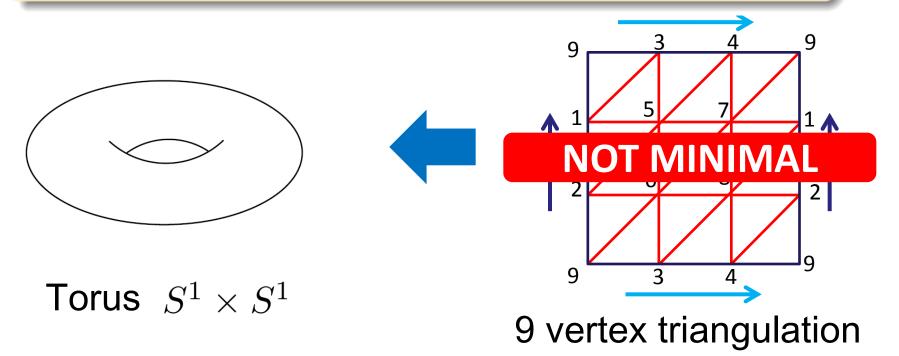
Satoshi Murai (Osaka University) Society Contemporary Contempora

Meeting On Combinatorial Commutative Algebra 2014

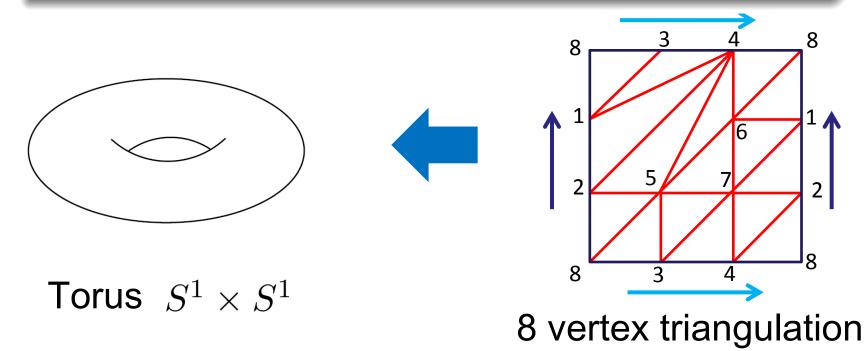
summary of slide is available at my homepage

Question

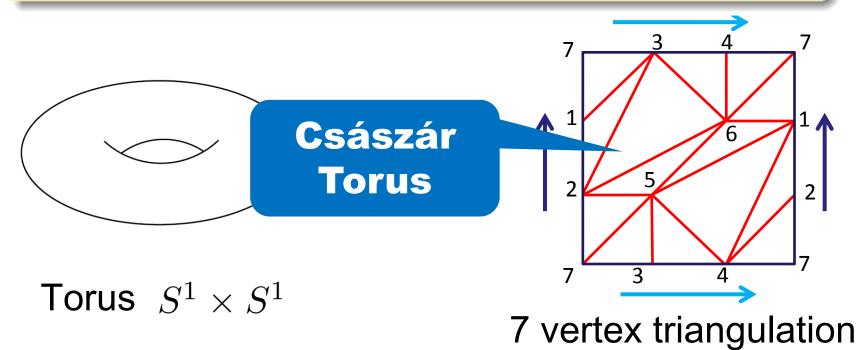
Question



Question



Question



Minimal triangulations of closed surfaces

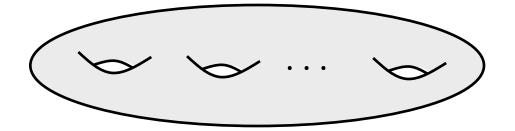
Closed surfaces (2-manifolds)

The topological type of a connected closed surface are completely classified. They are either (1)

(2)

Closed surfaces (2-manifolds)

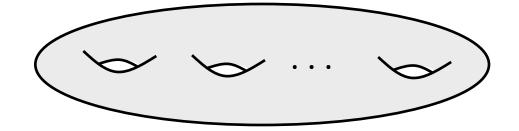
The topological type of a connected closed surface are completely classified. They are either (1) $S_g = (S^1 \times S^1) \# \cdots \# (S^1 \times S^1)$, $(S_0 = S^2)$



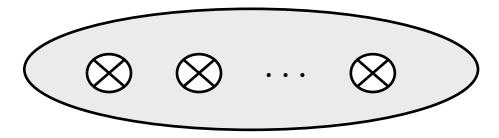
(2)

Closed surfaces (2-manifolds)

The topological type of a connected closed surface are completely classified. They are either (1) $S_g = (S^1 \times S^1) \# \cdots \# (S^1 \times S^1)$, $(S_0 = S^2)$



(2) $N_g = (\mathbb{R}P^2) \# \cdots \# (\mathbb{R}P^2)$



Minimal triangulations of surfaces

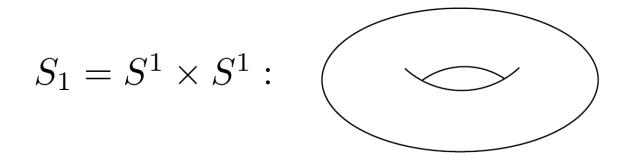
M: connected closed surface

Theorem (Heawood 1890)

If an n vertex triangulation of M exists, then

(1)
$$\binom{n-3}{2} \ge 3 \cdot (2-\chi(M)).$$

Theorem (Ringel '55, Jungerman–Ringel '80) If $M \neq S_2$, N_2 or N_3 then an n vertex triangulation of M exists if and only if (1) holds.



For S_1 , Heawood's inequality is

$$\binom{n-3}{2} \ge 3 \times 2 = 6$$

Minimal triangulation has 7 vertices. $\binom{4}{2} = 6$

For S^{100} , Heawood's inequality is

$$\binom{n-3}{2} \ge 3 \times 200 = 600$$

Minimal triangulation has 39 vertices.

$$\binom{35}{2} = 595, \binom{36}{2} = 630$$

Minimal triangulations of closed surfaces

M: connected closed surface

Theorem (Heawood 1890)

If an n vertex triangulation of M exists, then

(1)
$$\binom{n-3}{2} \ge 3 \cdot (2-\chi(M)).$$

Theorem (Ringel '55, Jungerman–Ringel '80) If $M \neq S_2$, N_2 or N_3 then an n vertex triangulation of M exists if and only if (1) holds.

Lower bounds of the number of the vertices & Upper bounds of graded Betti numbers

Notation 1

- Δ : (abstract) simplicial complex with n vertices
- M: connected closed d-mfd
- $|\Delta|$: geometric realization of Δ
- Δ is a triangulation of $M \Leftrightarrow |\Delta| \cong_{\text{homeo}} M$
- M is orientable \Leftrightarrow $H_d(M;\mathbb{Z}) \cong \mathbb{Z}$

Notation 2

- $\operatorname{lk}_{\Delta}(v) = \{ F \in \Delta : v \notin F, \{v\} \cup F \in \Delta \}$
- Δ is a combinatorial triangulation of M $\Leftrightarrow |\Delta| \cong_{\text{homeo}} M$ and each $lk_{\Delta}(v)$ is a PL sphere.
- Δ is a **F**-homology manifold
 - \Leftrightarrow pure & each $lk_{\Delta}(v)$ is Gorenstein* (over \mathbb{F})

Combinatorial C Triangulations C Homology Triangulations of closed mfds C manifolds

Generalizations of Heawood's inequality

Conjecture (Kühnel)

If an n vertex (combinatorial) triangulation of a connected closed d-mfd M exists, then

$$\binom{n-d+j-2}{j+1} \ge \binom{d+2}{j+1} \times \left(\dim_{\mathbb{F}} H_j(M;\mathbb{F})\right)$$

for $j < \frac{d}{2}$, and (when d is even)

$$\binom{n-\frac{d}{2}-2}{\frac{d}{2}+1} \ge \binom{d+2}{\frac{d}{2}+1} \times \frac{1}{2} \big(\dim_{\mathbb{F}} H_{\frac{d}{2}}(M;\mathbb{F})\big).$$

Remark: Heawood's inequality is the special case when d = 2, j = 1, $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$.

Known cases

Kühnel's Conjecture holds for

- d = 4, j = 2 (Kühnel '90).
- d = 3, j = 1 (Bagchi '14).
- $j = \frac{d}{2}$, *M* orientable or char(\mathbb{F}) = 2.
- j = 1, M orientable or char(\mathbb{F}) = 2.
- *M* orientable, $\operatorname{char}(\mathbb{F}) = 0$, each $\operatorname{lk}_{\Delta}(v)$ is a polytope. (Novik–Swartz '09).

Result

Theorem (M)

Kühnel's conjecture holds for the following cases;

- *j* = 1
- $j = \frac{d}{2}$ (d: even)
- triangulations Δ such that each lk_Δ(v) is a polytope when char(F) = 0.

Idea of Proof

$\mathbb{F}[\Delta] = \mathbb{F}[x_v : v \in \operatorname{Vert}(\Delta)]/I_{\Delta}$: Stanley-Reisner ring $I_{\Delta} = (x_{v_1} x_{v_2} \cdots x_{v_k} : \{v_1, v_2, \dots, v_k\} \notin \Delta)$ $\beta_{i,j}(I_{\Delta}) = \dim_{\mathbb{F}} \operatorname{Tor}_i(I_{\Delta}, \mathbb{F})_j$: graded Betti number Observation Let n_v be the num of vertices of $lk_{\Delta}(v)$. If $\beta_{i,i+j+1}(I_{lk_{\Lambda}(v)}) \leq \beta_{i,i+j+1}((x_1,\ldots,x_{n_v-d-1})^{j+1})$ for any i and for any vertex v, then $\binom{n-d-1}{2} \ge \binom{d+2}{2} \times \left(\dim_{\mathbb{F}} H_j(M;\mathbb{F})\right)$

Question

Let Δ be a Gorenstein* simplicial complex of dimension d-1 with n vertices. Does

$$\beta_{i,i+j}(I_{\Delta}) \leq \beta_{i,i+j}((x_1,\ldots,x_{n-d-1})^j)$$

holds for all *i* and $j \leq \frac{d+1}{2}$?

- The bounds hold for j = 2.
- The bounds hold for simplicial polytopes $(char(\mathbb{F})=0)$. (essentially Migliore–Nagle '03)

Tight triangulations & Linear resolutions

Definition

$\Delta_W = \{ F \in \Delta : F \subset W \}: \text{ induced subcomplex}$

Definition

A simplicial complex Δ on V is \mathbb{F} -tight if a natural map induced from the inclusion

$$i: H_i(\Delta_W; \mathbb{F}) \to H_i(\Delta; \mathbb{F})$$

is injective for all i and $W \subset V$.

We say that Δ is tight if it is \mathbb{F} -tight for some field \mathbb{F} .

Properties

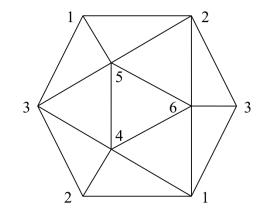
\mathbb{F} -tight $\Rightarrow i: H_0(\Delta_W; \mathbb{F}) \to H_0(\Delta; \mathbb{F})$ injective $\forall i, \forall W$

• connected & tight \Rightarrow neighborly $(^{\forall}u, v: vertices \Rightarrow \{u, v\} \in \Delta)$

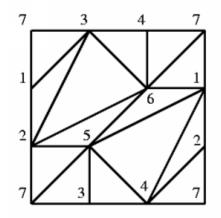
• If Δ is a triangulation of a closed surface, then Δ is tight $\Leftrightarrow \Delta$ is neighborly

Properties

Tight triangulation of $\mathbb{R}P^2$



Tight triangulation of $S^1 \times S^1$



• If Δ is a triangulation of a closed surface, then Δ is tight $\Leftrightarrow \Delta$ is neighborly

Big problem

Conjecture (Kühnel–Lutz '99)

A tight combinatorial triangulation of a closed manifold M has the smallest number of vertices among all combinatorial triangulations of M.

Motivation of the conjecture

Theorem

An n vertex triangulation of a closed surface (2-mfd) M satisfies

$$\binom{n-3}{2} = 3(2-\chi(M))$$

if and only if it is neighborly. tight

- Minimal triangulation of $S_1 = S^1 \times S^1$ is tight.
- Minimal triangulation of S_{100} is not tight.

Target Problem

Conjecture (Kühnel–Lutz '99)

A combinatorial triangulation of $S^i \times S^j$ $(i \le j)$ is tight if and only if it has i + 2j + 4 vertices.

Theorem (Brehm–Kühnel '86)

A combinatorial triangulation of $S^i \times S^j$ has at least i + 2j + 4 vertices.

Conjecture (Kühnel-Lutz '99)

A combinatorial triangulation of $S^i \times S^j$ $(i \le j)$ is tight if and only if it has i + 2j + 4 vertices.

Theorem (M)

Suppose j > 2i. If a combinatorial triangulation of $S^i \times S^j$ is tight, then it has exactly i + 2j + 4 vertices.

Tightness & Betti numbers

 $\Delta:$ simplicial complex on V

$$\sigma_k(\Delta; \mathbb{F}) = \sum_{W \subset V} \frac{1}{\binom{\#V}{\#W}} \dim_{\mathbb{F}} \widetilde{H}_{k-1}(\Delta_W; \mathbb{F})$$
$$\mu_k(\Delta; \mathbb{F}) = \sum_{v \in V} \frac{\sigma_{k-1}(\operatorname{lk}_{\Delta}(v); \mathbb{F})}{(\operatorname{num of vert of } \operatorname{lk}_{\Delta}(v)) + 1}$$

Theorem (Bagchi–Datta '14, Bagchi '14) A simplicial complex Δ is \mathbb{F} -tight if and only if $\dim_{\mathbb{F}} H_k(\Delta; \mathbb{F}) = \mu_k(\Delta; \mathbb{F})$ for all k.

Tightness & Betti numbers

 $\Delta:$ simplicial complex on V

$$\sigma_k(\Delta; \mathbb{F}) = \sum_{\ell=k}^n \frac{1}{\binom{n}{\ell}} \beta_{\ell-k,(\ell-k)+k} \big(\mathbb{F}[\Delta] \big)$$

n = #V

Theorem (Hochster's formula)

$$\beta_{i,j}(\mathbb{F}[\Delta]) = \sum_{\#W=j} \dim_{\mathbb{F}} \widetilde{H}_{i-1}(\Delta_W; \mathbb{F}).$$

Tightness & Betti numbers

 Δ : simplicial complex on V

$$\sigma_k(\Delta; \mathbb{F}) = \sum_{\ell=k}^n \frac{1}{\binom{n}{\ell}} \beta_{\ell-k,(\ell-k)+k} \big(\mathbb{F}[\Delta] \big)$$

$$\mu_k(\Delta; \mathbb{F}) = \sum_{v \in V} \frac{\sigma_{k-1}(\mathrm{lk}_\Delta(v); \mathbb{F})}{(\text{num of vert of } \mathrm{lk}_\Delta(v)) + 1} \qquad n = \#V$$

Theorem (Bagchi–Datta '14, Bagchi '14) A simplicial complex Δ is \mathbb{F} -tight if and only if $\dim_{\mathbb{F}} H_k(\Delta; \mathbb{F}) = \mu_k(\Delta; \mathbb{F})$ for all k.

Observation

$$I_{\langle k \rangle} = (f \in I : \deg f = k)$$

Observation

Let Δ be a tight combinatorial triang. of $S^i \times S^j$. If $(I_{lk_{\Delta}(v)})_{\langle i+1 \rangle}$ has a linear resolution for each vertex v, then it has exactly i + 2j + 4 vertices.

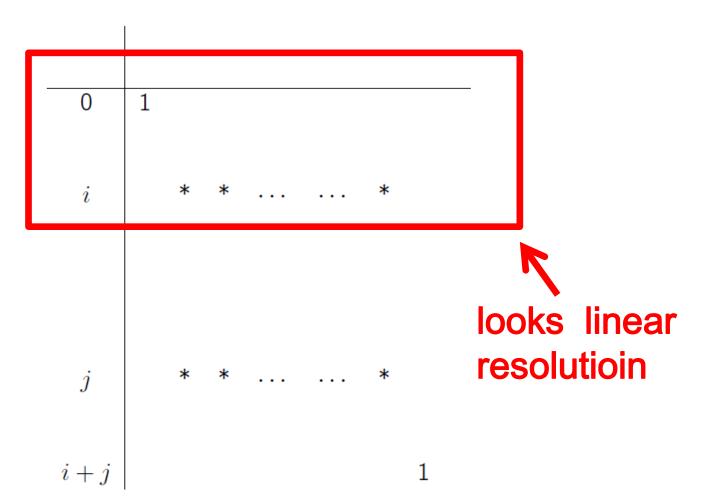
Lemma

Suppose j > 2i. For any tight triang. Δ of $S^i \times S^j$, $(I_{lk_{\Delta}(v)})_{\langle i+1 \rangle}$ has a linear resolution for each vertex v.

Why link has linear resolution?

 Δ : tight triangulation of $S^i \times S^j$ (j > 2i)

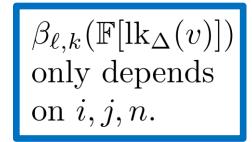
Betti Diagram of $\mathbb{F}[lk_{\Delta}(v)]$



Why linear resolution determine the number of the vertices?

Assumption:

- Δ is an combinatorial triangulation of $S^i \times S^j$.
- $(I_{lk_{\Delta}(v)})_{\langle i+1 \rangle}$ has a linear resolution. $\Rightarrow (I_{lk_{\Delta}(v)})_{\langle i+1 \rangle}$ is Cohen–Macaulay $\begin{cases} \beta_{\ell,k}(\mathbb{F}[lk_{\Delta}(v)]) \\ \text{only depends} \\ \text{on } i, j, n. \end{cases}$



 \Rightarrow use $1 = \dim_{\mathbb{F}} H_i(S^i \times S^j; \mathbb{F}) = \mu_i(\Delta; \mathbb{F}).$

Sum of $\beta_{k,k+i}(\mathbb{F}[lk_{\Delta}(v)])$. Only depends on n, i and j.

Question

Let Δ be a tight triangulation of $S^i \times S^j$ (i < j). Is it true that $(I_{lk_{\Delta}(v)})_{\langle i+1 \rangle}$ has a linear resolution?

Question

Let Δ be a tight homology 3-mfd. Does $(I_{lk_{\Delta}(v)})_{\langle 2 \rangle}$ has a 2-linear resolution?

Unfortunate Fact

• Existence of tight triangulations are know for

 $S^1 \times S^j$ (j:odd), $S^2 \times S^3$, $S^3 \times S^3$

• Non-Existence of tight triangulations are known for

 $S^1 \times S^j$ (j:even), $S^2 \times S^2$

Please find tight triangulations of $S^2 \times S^j$ $(j \ge 5)$

Thank you very much for your attention