On the toric ideal of a matroid and related problems

Michał Lasoń
Institute of Mathematics of the Polish Academy of Sciences

Levico Terme, 9th September 2014

what is a matroid?

what is a matroid?

A structure that abstracts the idea of independence.

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:
- exchange property: for $B, B^{\prime} \in \mathcal{B}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime} \in \mathcal{B}$

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:
- exchange property: for $B, B^{\prime} \in \mathcal{B}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime} \in \mathcal{B}$
as a consequence it satisfies also:
- symmetric exchange property

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:
- exchange property: for $B, B^{\prime} \in \mathcal{B}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime} \in \mathcal{B}$
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:
- exchange property: for $B, B^{\prime} \in \mathcal{B}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime} \in \mathcal{B}$
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property
- rank function

what is a matroid?

A structure that abstracts the idea of independence. Matroid M on a ground set E can be introduced in several ways:

- independent sets
- bases, the set of bases \mathcal{B} satisfies the following axiom:
- exchange property: for $B, B^{\prime} \in \mathcal{B}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime} \in \mathcal{B}$
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property
- rank function
- ... and by many other ways (circuits, flats, hyperplanes)

examples

- uniform matroid: E - an arbitrary finite set

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle bases - spanning trees of G

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle bases - spanning trees of G
- transwersal matroid: E - an arbitrary finite set together with a multiset \mathcal{A} of its subsets

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle bases - spanning trees of G
- transwersal matroid: E - an arbitrary finite set together with a multiset \mathcal{A} of its subsets independent sets - transwersals of \mathcal{A}

examples

- uniform matroid: E - an arbitrary finite set independent sets - subsets of E of cardinality at most d bases - subsets of E of cardinality exactly d
- representable matroid: E - a finite subset of a vector space independent sets - linearly independent subsets of E bases - bases of E in the vector space
- graphic matroid: E - the set of edges in a given graph G independent sets - subsets of E that do not contain a cycle bases - spanning trees of G
- transwersal matroid: E - an arbitrary finite set together with a multiset \mathcal{A} of its subsets independent sets - transwersals of \mathcal{A} bases - maximum transwersals of \mathcal{A}

toric ideal of a matroid

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural \mathbb{K}-homomorphism:

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural \mathbb{K}-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural \mathbb{K}-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of M, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural \mathbb{K}-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of M, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.
By the symmetric exchange property from bases B, B^{\prime} we get bases

$$
D=(B \backslash e) \cup f \text { and } D^{\prime}=\left(B^{\prime} \backslash f\right) \cup e
$$

for some $e \in B$ and $f \in B^{\prime}$.

toric ideal of a matroid

M a matroid on a ground set E with the set of bases \mathcal{B}, \mathbb{K} a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural \mathbb{K}-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of M, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.
By the symmetric exchange property from bases B, B^{\prime} we get bases

$$
D=(B \backslash e) \cup f \text { and } D^{\prime}=\left(B^{\prime} \backslash f\right) \cup e
$$

for some $e \in B$ and $f \in B^{\prime}$. Then clearly $y_{B} y_{B^{\prime}}-y_{D} y_{D^{\prime}} \in I_{M}$.

White's conjectures

Conjecture (White '80)

For every matroid M :

White's conjectures

Conjecture (White '80)

For every matroid M :

- WEAK: I_{M} is generated by quadratic binomials

White's conjectures

Conjecture (White '80)

For every matroid M :

- WEAK: I_{M} is generated by quadratic binomials
- CLASSIC: I_{M} is generated by quadratic binomials corresponding to symmetric exchanges

White's conjectures

Conjecture (White '80)

For every matroid M :

- WEAK: I_{M} is generated by quadratic binomials
- CLASSIC: I_{M} is generated by quadratic binomials corresponding to symmetric exchanges
- STRONG: I_{M} in noncommutative ring S_{M} is generated by quadratic binomials corresponding to symmetric exchanges

what is known?

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids)

what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids) and CLASSIC up to saturation for arbitrary matroids

our results

M is strongly base orderable if for any two bases B and B^{\prime} there exists a bijection $\pi: B \rightarrow B^{\prime}$ satisfying multiple symmetric exchange property

our results

M is strongly base orderable if for any two bases B and B^{\prime} there exists a bijection $\pi: B \rightarrow B^{\prime}$ satisfying multiple symmetric exchange property, that is

$$
B \cup \pi(A) \backslash A \in \mathcal{B} \text { for any } A \subset B
$$

our results

M is strongly base orderable if for any two bases B and B^{\prime} there exists a bijection $\pi: B \rightarrow B^{\prime}$ satisfying multiple symmetric exchange property, that is

$$
B \cup \pi(A) \backslash A \in \mathcal{B} \text { for any } A \subset B
$$

The class of strongly base orderable matroids is closed under taking minors, and contains transversal matroids.

our results

M is strongly base orderable if for any two bases B and B^{\prime} there exists a bijection $\pi: B \rightarrow B^{\prime}$ satisfying multiple symmetric exchange property, that is

$$
B \cup \pi(A) \backslash A \in \mathcal{B} \text { for any } A \subset B
$$

The class of strongly base orderable matroids is closed under taking minors, and contains transversal matroids.

Theorem (L., Michałek '14)
If M is a strongly base orderable matroid, then $M \in S T R O N G$.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.
CLASSIC asserts that $J_{M}=I_{M}$.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.
CLASSIC asserts that $J_{M}=I_{M}$. In other words, affine schemes $\operatorname{Spec}\left(S_{M} / I_{M}\right)$ and $\operatorname{Spec}\left(S_{M} / J_{M}\right)$ are equal.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.
CLASSIC asserts that $J_{M}=I_{M}$. In other words, affine schemes $\operatorname{Spec}\left(S_{M} / I_{M}\right)$ and $\operatorname{Spec}\left(S_{M} / J_{M}\right)$ are equal.
Let \mathfrak{m} be the ideal generated by all variables in S_{M} (so called irrelevant ideal).

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.
CLASSIC asserts that $J_{M}=I_{M}$. In other words, affine schemes $\operatorname{Spec}\left(S_{M} / I_{M}\right)$ and $\operatorname{Spec}\left(S_{M} / J_{M}\right)$ are equal.
Let \mathfrak{m} be the ideal generated by all variables in S_{M} (so called irrelevant ideal).

Theorem (L., Michałek '14)
The saturation of J_{M} with respect to \mathfrak{m} equals to I_{M}.

our results

Let J_{M} be the ideal generated by quadratic binomials corresponding to symmetric exchanges. Clearly, $J_{M} \subset I_{M}$.
CLASSIC asserts that $J_{M}=I_{M}$. In other words, affine schemes $\operatorname{Spec}\left(S_{M} / I_{M}\right)$ and $\operatorname{Spec}\left(S_{M} / J_{M}\right)$ are equal.
Let \mathfrak{m} be the ideal generated by all variables in S_{M} (so called irrelevant ideal).

Theorem (L., Michałek '14)
The saturation of J_{M} with respect to \mathfrak{m} equals to I_{M}.
Projective schemes $\operatorname{Proj}\left(S_{M} / I_{M}\right)$ and $\operatorname{Proj}\left(S_{M} / J_{M}\right)$ are equal.

why up to saturation?

Fix a basis B, we have to show that $y_{B}^{n} I_{M} \subset J_{M}$ holds for some n.

why up to saturation?

Fix a basis B, we have to show that $y_{B}^{n} I_{M} \subset J_{M}$ holds for some n. Take $b=y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}} \in I_{M}$.

why up to saturation?

Fix a basis B, we have to show that $y_{B}^{n} I_{M} \subset J_{M}$ holds for some n. Take $b=y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}} \in I_{M}$. Multiplying by a high power of y_{B} we reduce the problem of generating b to the case when for each i holds

$$
B_{i}=\left(B \backslash f_{i}\right) \cup e_{i} \text { and } D_{i}=\left(B \backslash f_{i}\right) \cup e_{i-1}
$$

for $B=\left\{f_{1}, \ldots, f_{n}\right\}$ and some elements e_{1}, \ldots, e_{n}.

why up to saturation?

Fix a basis B, we have to show that $y_{B}^{n} I_{M} \subset J_{M}$ holds for some n. Take $b=y_{B_{1}} \cdots y_{B_{n}}-y_{D_{1}} \cdots y_{D_{n}} \in I_{M}$. Multiplying by a high power of y_{B} we reduce the problem of generating b to the case when for each i holds

$$
B_{i}=\left(B \backslash f_{i}\right) \cup e_{i} \text { and } D_{i}=\left(B \backslash f_{i}\right) \cup e_{i-1}
$$

for $B=\left\{f_{1}, \ldots, f_{n}\right\}$ and some elements e_{1}, \ldots, e_{n}.
We can show that this elements are generated by quadratic binomials corresponding to symmetric exchanges.

relations between conjectures

All classes are closed under taking minors and dual matroid.

relations between conjectures

All classes are closed under taking minors and dual matroid. Classes WEAK and STRONG are closed under direct sum.

relations between conjectures

All classes are closed under taking minors and dual matroid. Classes WEAK and STRONG are closed under direct sum.

Proposition
For a matroid M the following conditions are equivalent:

- $M \in$ STRONG
- $M \oplus M \in S T R O N G$
- $M \oplus M \in$ CLASSIC

relations between conjectures

All classes are closed under taking minors and dual matroid. Classes WEAK and STRONG are closed under direct sum.

Proposition
For a matroid M the following conditions are equivalent:

- $M \in S T R O N G$
- $M \oplus M \in S T R O N G$
- $M \oplus M \in$ CLASSIC

If a class of matroids \mathcal{C} is closed under direct sums, then $\mathcal{C} \subset S T R O N G$ if and only if $\mathcal{C} \subset C L A S S I C$.

relations between conjectures

All classes are closed under taking minors and dual matroid. Classes WEAK and STRONG are closed under direct sum.

Proposition
For a matroid M the following conditions are equivalent:

- $M \in S T R O N G$
- $M \oplus M \in S T R O N G$
- $M \oplus M \in$ CLASSIC

If a class of matroids \mathcal{C} is closed under direct sums, then
$\mathcal{C} \subset S T R O N G$ if and only if $\mathcal{C} \subset C L A S S I C$. In particular, strongly base orderable, graphical, and cographical matroids belong to STRONG.

relations between conjectures

All classes are closed under taking minors and dual matroid. Classes WEAK and STRONG are closed under direct sum.

Proposition
For a matroid M the following conditions are equivalent:

- $M \in S T R O N G$
- $M \oplus M \in S T R O N G$
- $M \oplus M \in$ CLASSIC

If a class of matroids \mathcal{C} is closed under direct sums, then
$\mathcal{C} \subset S T R O N G$ if and only if $\mathcal{C} \subset$ CLASSIC. In particular, strongly base orderable, graphical, and cographical matroids belong to STRONG.
Moreover, CLASSIC is closed under direct sum if and only if STRONG $=$ CLASSIC, we believe it is an open question.

cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)
Let $M=(E, r)$ be a matroid. Equivalent are:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- it is possible to place elements of E on a circle in such a way that any $r(E)$ cyclically consecutive elements form a basis

cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)
Let $M=(E, r)$ be a matroid. Equivalent are:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- it is possible to place elements of E on a circle in such a way that any $r(E)$ cyclically consecutive elements form a basis

Theorem (van den Heuvel, Thomassé '12)
If $|E|$ and $r(E)$ are coprime, then cyclic ordering conjecture holds for $M=(E, r)$.

base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases.

base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases. For 2-matroid M let $\mathfrak{B}_{2}(M)$ be a graph having as vertices pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to E, and edges between vertices obtained by a symmetric exchange property.

base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases. For 2-matroid M let $\mathfrak{B}_{2}(M)$ be a graph having as vertices pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to E, and edges between vertices obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)
There exist complementary bases B_{1}, B_{2} in M, such that vertices $\left(B_{1}, B_{2}\right)$ and $\left(B_{2}, B_{1}\right)$ in the graph $\mathfrak{B}_{2}(M)$ are connected by a path of length at most $r(E)$.

base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases. For 2-matroid M let $\mathfrak{B}_{2}(M)$ be a graph having as vertices pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to E, and edges between vertices obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)
There exist complementary bases B_{1}, B_{2} in M, such that vertices $\left(B_{1}, B_{2}\right)$ and $\left(B_{2}, B_{1}\right)$ in the graph $\mathfrak{B}_{2}(M)$ are connected by a path of length at most $r(E)$.

Conjecture (Farber, Richter, Shank '85)
For every 2-matroid M the graph $\mathfrak{B}_{2}(M)$ is connected.

base graph of a k-matroid

k-matroid (for $k \geqslant 3$) is a matroid in which E is a union of k disjoint bases.

base graph of a k-matroid

k-matroid (for $k \geqslant 3$) is a matroid in which E is a union of k disjoint bases. For a k-matroid M let $\mathfrak{B}_{k}(M)$ be a graph whose vertices are sets of k bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to E.

base graph of a k-matroid

k-matroid (for $k \geqslant 3$) is a matroid in which E is a union of k disjoint bases. For a k-matroid M let $\mathfrak{B}_{k}(M)$ be a graph whose vertices are sets of k bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to E. An edge joins two vertices if they have nonempty intersection.

base graph of a k-matroid

k-matroid (for $k \geqslant 3$) is a matroid in which E is a union of k disjoint bases. For a k-matroid M let $\mathfrak{B}_{k}(M)$ be a graph whose vertices are sets of k bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to E. An edge joins two vertices if they have nonempty intersection.

Proposition (Blasiak '08)

- WEAK \Longleftrightarrow for $k \geqslant 3$ graph \mathfrak{B}_{k} is connected

base graph of a k-matroid

k-matroid (for $k \geqslant 3$) is a matroid in which E is a union of k disjoint bases. For a k-matroid M let $\mathfrak{B}_{k}(M)$ be a graph whose vertices are sets of k bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to E. An edge joins two vertices if they have nonempty intersection.

Proposition (Blasiak '08)

- WEAK \Longleftrightarrow for $k \geqslant 3$ graph \mathfrak{B}_{k} is connected
- STRONG \Longleftrightarrow for $k \geqslant 2$ graph \mathfrak{B}_{k} is connected

Thank you!

