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what is a matroid?

A structure that abstracts the idea of independence.
Matroid M on a ground set E can be introduced in several ways:
@ independent sets
@ bases, the set of bases B satisfies the following axiom:
e exchange property:
for B,B' € Band b’ € B\ B thereis b € B\ B’ such that
(B\b)Ub €B
as a consequence it satisfies also:
e symmetric exchange property
e multiple symmetric exchange property

rank function

. and by many other ways (circuits, flats, hyperplanes)
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@ uniform matroid: E — an arbitrary finite set
independent sets — subsets of E of cardinality at most d
bases — subsets of E of cardinality exactly d

@ representable matroid: E — a finite subset of a vector space
independent sets — linearly independent subsets of E
bases — bases of E in the vector space

@ graphic matroid: E — the set of edges in a given graph G
independent sets — subsets of E that do not contain a cycle
bases — spanning trees of G

@ transwersal matroid: E — an arbitrary finite set together with a
multiset A of its subsets
independent sets — transwersals of A
bases — maximum transwersals of A
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M a matroid on a ground set E with the set of bases B, K a field
Sy :=K]|yg: B e B
There is a natural K-homomorphism:

@M:SMByB%HXeGK[Xe:eGE]
ecB

Toric ideal of M, is the kernel Iy, : = ker pp.
By the symmetric exchange property from bases B, B’ we get bases

D=(B\e)Ufand D'=(B'\f)ue

for some e € B and f € B'. Then clearly ygys — ypyp' € Iu.
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White's conjectures

Conjecture (White '80)
For every matroid M:
o WEAK: I is generated by quadratic binomials
o CLASSIC: Iy is generated by quadratic binomials
corresponding to symmetric exchanges

@ STRONG: Ipy in noncommutative ring Sy is generated by
quadratic binomials corresponding to symmetric exchanges
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what is known?

'02 Herzog, Hibi: equivalent for discrete polymatroids
'07 Conca: WEAK for transversal polymatroids

'08 Blasiak: CLASSIC for graphic matroids

'10 Kashiwabara: CLASSIC for matroids of rank < 3

'11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)

@ '13 Bonin: STRONG for sparse paving matroids

@ '14 L., Michatek: STRONG for strongly base orderable
matroids (contain transversal matroids) and
CLASSIC up to saturation for arbitrary matroids
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The class of strongly base orderable matroids is closed under taking
minors, and contains transversal matroids.
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our results

M is strongly base orderable if for any two bases B and B’ there
exists a bijection 7 : B — B’ satisfying multiple symmetric
exchange property, that is

BuUm(A)\ Aec B forany AC B.

The class of strongly base orderable matroids is closed under taking
minors, and contains transversal matroids.

Theorem (L., Michatek '14)
If M is a strongly base orderable matroid, then M € STRONG.
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our results

Let Jy; be the ideal generated by quadratic binomials corresponding
to symmetric exchanges. Clearly, Jy; C Iy.

CLASSIC asserts that Jy; = Ips. In other words, affine schemes
Spec(Snp/Im) and Spec(Sp/JIm) are equal.

Let m be the ideal generated by all variables in Sy

(so called irrelevant ideal).

Theorem (L., Michatek '14)

The saturation of Jy; with respect to m equals to Iy;.
Projective schemes Proj(Sn/Im) and Proj(Sy/JIm) are equal.
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why up to saturation?

Fix a basis B, we have to show that yg/y C Ju holds for some n.
Take b =yp, - - yB, — YD, " - - YD, € Im. Multiplying by a high
power of yg we reduce the problem of generating b to the case
when for each i holds

Bi=(B\f)Ue and D; = (B\ f;)Ue_1,

for B={f,...,f,} and some elements e1, ..., e,.
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why up to saturation?

Fix a basis B, we have to show that yg/y C Ju holds for some n.
Take b =yp, - - yB, — YD, " - - YD, € Im. Multiplying by a high
power of yg we reduce the problem of generating b to the case
when for each i holds

Bi=(B\f)Ue and D; = (B\ f;)Ue_1,

for B={f,...,f,} and some elements e1, ..., e,.

We can show that this elements are generated by quadratic
binomials corresponding to symmetric exchanges.
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All classes are closed under taking minors and dual matroid.
Classes WEAK and STRONG are closed under direct sum.

Proposition

For a matroid M the following conditions are equivalent:
e M e STRONG
e M& M e STRONG
e M& M e CLASSIC

If a class of matroids C is closed under direct sums, then
C C STRONG if and only if C ¢ CLASSIC.
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For a matroid M the following conditions are equivalent:

e M e STRONG

e M& M e STRONG

e M& M e CLASSIC

If a class of matroids C is closed under direct sums, then

C C STRONG if and only if C € CLASSIC. In particular, strongly
base orderable, graphical, and cographical matroids belong to
STRONG.
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relations between conjectures

All classes are closed under taking minors and dual matroid.
Classes WEAK and STRONG are closed under direct sum.
Proposition
For a matroid M the following conditions are equivalent:

e M e STRONG

e M& M e STRONG

e M& M e CLASSIC

If a class of matroids C is closed under direct sums, then

C C STRONG if and only if C € CLASSIC. In particular, strongly
base orderable, graphical, and cographical matroids belong to
STRONG.

Moreover, CLASSIC is closed under direct sum if and only if
STRONG = CLASSIC, we believe it is an open question.
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cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)
Let M = (E, r) be a matroid. Equivalent are:

A E
% < % holds

@ jt is possible to place elements of E on a circle in such a way
that any r(E) cyclically consecutive elements form a basis

e for each ) # A C E the inequality
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cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano '88)
Let M = (E, r) be a matroid. Equivalent are:

e for each () # A C E the inequality % < % holds

@ jt is possible to place elements of E on a circle in such a way
that any r(E) cyclically consecutive elements form a basis

Theorem (van den Heuvel, Thomassé '12)

If |[E| and r(E) are coprime, then cyclic ordering conjecture holds
for M = (E,r).
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base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases.
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For 2-matroid M let B,(M) be a graph having as vertices pairs of
bases (B1, B2) which sum to E, and edges between vertices
obtained by a symmetric exchange property.
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2-matroid is a matroid in which E is a union of two disjoint bases.
For 2-matroid M let B,(M) be a graph having as vertices pairs of
bases (B1, B2) which sum to E, and edges between vertices
obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases By, B, in M, such that vertices
(Bi1, B2) and (Ba, Bi) in the graph $B,(M) are connected by a path
of length at most r(E).
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base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases.
For 2-matroid M let B,(M) be a graph having as vertices pairs of
bases (B1, B2) which sum to E, and edges between vertices
obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases By, B, in M, such that vertices
(Bi1, B2) and (Ba, Bi) in the graph $B,(M) are connected by a path
of length at most r(E).

v

Conjecture (Farber, Richter, Shank '85)
For every 2-matroid M the graph B,(M) is connected.
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases.
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases. For a k-matroid M let B, (M) be a graph whose
vertices are sets of k bases {Bi, ..., Bk} which sum to E.
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases. For a k-matroid M let B, (M) be a graph whose
vertices are sets of k bases {Bi, ..., Bx} which sum to E. An edge
joins two vertices if they have nonempty intersection.
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases. For a k-matroid M let B, (M) be a graph whose
vertices are sets of k bases {Bi, ..., Bx} which sum to E. An edge
joins two vertices if they have nonempty intersection.

Proposition (Blasiak '08)
o WEAK < for k > 3 graph B, is connected
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases. For a k-matroid M let B, (M) be a graph whose
vertices are sets of k bases {Bi, ..., Bx} which sum to E. An edge
joins two vertices if they have nonempty intersection.

Proposition (Blasiak '08)
o WEAK < for k > 3 graph B, is connected
@ STRONG <= for k > 2 graph B is connected
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