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what is a matroid?

A structure that abstracts the idea of independence.
Matroid M on a ground set E can be introduced in several ways:

independent sets
bases, the set of bases B satisfies the following axiom:

exchange property:
for B,B ′ ∈ B and b′ ∈ B ′ \ B there is b ∈ B \ B ′ such that
(B \ b) ∪ b′ ∈ B

as a consequence it satisfies also:
symmetric exchange property
multiple symmetric exchange property

rank function
... and by many other ways (circuits, flats, hyperplanes)
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examples

uniform matroid: E – an arbitrary finite set

independent sets – subsets of E of cardinality at most d
bases – subsets of E of cardinality exactly d
representable matroid: E – a finite subset of a vector space
independent sets – linearly independent subsets of E
bases – bases of E in the vector space
graphic matroid: E – the set of edges in a given graph G
independent sets – subsets of E that do not contain a cycle
bases – spanning trees of G
transwersal matroid: E – an arbitrary finite set together with a
multiset A of its subsets
independent sets – transwersals of A
bases – maximum transwersals of A
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toric ideal of a matroid

M a matroid on a ground set E with the set of bases B, K a field

SM : = K[yB : B ∈ B]

There is a natural K-homomorphism:

ϕM :SM 3 yB →
∏
e∈B

xe ∈ K[xe : e ∈ E ]

Toric ideal of M, is the kernel IM : = kerϕM .
By the symmetric exchange property from bases B,B ′ we get bases

D = (B \ e) ∪ f and D ′ = (B ′ \ f ) ∪ e

for some e ∈ B and f ∈ B ′. Then clearly yByB′ − yDyD′ ∈ IM .
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White’s conjectures

Conjecture (White ’80)
For every matroid M:

WEAK: IM is generated by quadratic binomials
CLASSIC: IM is generated by quadratic binomials
corresponding to symmetric exchanges
STRONG: IM in noncommutative ring SM is generated by
quadratic binomials corresponding to symmetric exchanges
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what is known?

’02 Herzog, Hibi: equivalent for discrete polymatroids
’07 Conca: WEAK for transversal polymatroids
’08 Blasiak: CLASSIC for graphic matroids
’10 Kashiwabara: CLASSIC for matroids of rank 6 3
’11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)
’13 Bonin: STRONG for sparse paving matroids
’14 L., Michałek: STRONG for strongly base orderable
matroids (contain transversal matroids) and
CLASSIC up to saturation for arbitrary matroids
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our results

M is strongly base orderable if for any two bases B and B ′ there
exists a bijection π : B → B ′ satisfying multiple symmetric
exchange property

, that is

B ∪ π(A) \ A ∈ B for any A ⊂ B.

The class of strongly base orderable matroids is closed under taking
minors, and contains transversal matroids.

Theorem (L., Michałek ’14)
If M is a strongly base orderable matroid, then M ∈ STRONG.
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our results

Let JM be the ideal generated by quadratic binomials corresponding
to symmetric exchanges.

Clearly, JM ⊂ IM .
CLASSIC asserts that JM = IM . In other words, affine schemes
Spec(SM/IM) and Spec(SM/JM) are equal.
Let m be the ideal generated by all variables in SM
(so called irrelevant ideal).

Theorem (L., Michałek ’14)
The saturation of JM with respect to m equals to IM .
Projective schemes Proj(SM/IM) and Proj(SM/JM) are equal.
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why up to saturation?

Fix a basis B , we have to show that yn
B IM ⊂ JM holds for some n.

Take b = yB1 · · · yBn − yD1 · · · yDn ∈ IM . Multiplying by a high
power of yB we reduce the problem of generating b to the case
when for each i holds

Bi = (B \ fi ) ∪ ei and Di = (B \ fi ) ∪ ei−1,

for B = {f1, . . . , fn} and some elements e1, . . . , en.
We can show that this elements are generated by quadratic
binomials corresponding to symmetric exchanges.
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relations between conjectures

All classes are closed under taking minors and dual matroid.

Classes WEAK and STRONG are closed under direct sum.

Proposition
For a matroid M the following conditions are equivalent:

M ∈ STRONG
M ⊕M ∈ STRONG
M ⊕M ∈ CLASSIC

If a class of matroids C is closed under direct sums, then
C ⊂ STRONG if and only if C ⊂ CLASSIC . In particular, strongly
base orderable, graphical, and cographical matroids belong to
STRONG .
Moreover, CLASSIC is closed under direct sum if and only if
STRONG = CLASSIC , we believe it is an open question.
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cyclic ordering conjecture

Conjecture (Kajitani, Ueno, Miyano ’88)
Let M = (E , r) be a matroid. Equivalent are:

for each ∅ 6= A ⊂ E the inequality |A|
r(A) 6

|E |
r(E) holds

it is possible to place elements of E on a circle in such a way
that any r(E ) cyclically consecutive elements form a basis

Theorem (van den Heuvel, Thomassé ’12)
If |E | and r(E ) are coprime, then cyclic ordering conjecture holds
for M = (E , r).
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base graph of a 2-matroid

2-matroid is a matroid in which E is a union of two disjoint bases.

For 2-matroid M let B2(M) be a graph having as vertices pairs of
bases (B1,B2) which sum to E , and edges between vertices
obtained by a symmetric exchange property.

Conjecture (cyclic ordering conjecture for a 2-matroid)
There exist complementary bases B1,B2 in M, such that vertices
(B1,B2) and (B2,B1) in the graph B2(M) are connected by a path
of length at most r(E ).

Conjecture (Farber, Richter, Shank ’85)
For every 2-matroid M the graph B2(M) is connected.
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base graph of a k-matroid

k-matroid (for k > 3) is a matroid in which E is a union of k
disjoint bases.

For a k-matroid M let Bk(M) be a graph whose
vertices are sets of k bases {B1, . . . ,Bk} which sum to E . An edge
joins two vertices if they have nonempty intersection.

Proposition (Blasiak ’08)
WEAK ⇐⇒ for k > 3 graph Bk is connected
STRONG ⇐⇒ for k > 2 graph Bk is connected
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Thank you!
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