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Motivation: Measures of Singularities Measuring of Singularities using multiplicity

Measuring of Singularity
Multiplicity

Let f be a polynomial over a field C, vanishing at z ∈ Cn.

We say f is smooth at z iff
∂f

∂xi

∣∣∣∣∣
z

6= 0 for some i.

For simplicity assume z = 0.

Define the multiplicity, or order of singularity of f at z to be

max {d | every differential ∂ of order ≤ d, ∂ · f |z = 0, }
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Motivation: Measures of Singularities Measuring of Singularities using multiplicity

Measures of Singularity
Multiplicity

The multiplicity is an important first step in the study of singularities, but
it is a coarse measure. The following curves of multiplicity two manifest
different ”levels” of singularity.

FIRST STEPS TOWARDS UNDERSTANDING THE LOG CANONICAL

THRESHOLD AND THE F-PURE THRESHOLD

ANGÉLICA BENITO, ELEONORE FABER, KAREN E. SMITH

1. Introduction

Consider a polynomial f over some field k, vanishing at some point x in kn. By definition,
f is smooth at x (or the hypersurface defined by f is smooth at x) if and only if some partial

derivative ∂f
∂xi

is non-zero there. Otherwise, f is singular at x. But how singular? Can we
quantify the singularity of f at x?

The multiplicity is perhaps the most naive measurement of singularities. Because f is
singular at x if all the first order partial derivatives of f vanish there, it is natural to say that
f is even more singular if also all the second order partials vanish, and so forth. The order,
or multiplicity, of the singularity at x is the largest d such that for all differential operators ∂
of order less than d, ∂f vanishes at x. Choosing coordinates so that x is the origin, it is easy
to see that the multiplicity is simply the degree of the lowest degree term of f .

The multiplicity is an important first step in measuring singularities, but it is too crude
to give a good measurement of singularities. For example, the polynomials xy and y2 − x3

both define singularities of multiplicity two, though the former is clearly less singular than
the latter. Indeed, xy defines a simple normal crossing divisor, whereas the singularity of the
cuspidal curve defined by y2 − x3 is quite complicated, and that of, for example y2 − x17 is
even more so.

yx = 0 y2 = x3 y2 = x17

Figure 1. Curves with multiplicity 2 at the origin.

This paper surveys a much more subtle measure of the singularities of a polynomial from
three different approaches— analytic, algebro-geometric, and finally, algebraic. Miraculously,
all three approaches lead to essentially the same measurement of singularities: the log canoni-
cal threshold (in characteristic zero) and the closely related F -pure threshold (in characteristic
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Test ideals in algebra, as well as multiplier ideals in birational geometry
and analysis, spurred from an effort to better measure singularities.
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

Measuring Singularities
3 approaches - 2 characteristics - 2 invariants

These far more subtle measurements emerged from analytic, geometric
and algebraic points of view.

charK = 0, the log canonical threshold, lct

can be defined analytically (via integration), or geometrically (via
resolution of singularities).

charK = p > 0, the F-pure threshold, fpt

can be defined algebraically using the Frobenius endomorphism.

Remarkably, lct and fpt define essentially the same invariant.

”The smaller the values of these invariants, the worse the singularities.”
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

Measuring Singularities
Analytic approach to the Log canonical threshold

f ∈ C[x1, . . . , xn].

Analytically:

lct (f) = smallest real number λ > 0 s. t. |f−2λ| is not locally integrable

= sup

{
λ ∈ R+

∣∣∣ ∫
Bε(0)

1

|f |2λ <∞, for some ε > 0

}
.
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

Measuring Singularities

Analytic approach: f = z1
a1 . . . zn

an then lct (f) = min
i

{
1

ai

}
Example
Let f = z1

a1 . . . zn
an , ai ∈ N.

Use polar coordinates to integrate f |zi| = ri, det = r1 . . . rn :∫
1

|z1|2a1λ . . . |zn|2anλ
dµ =

∫
r1 . . . rn

r1
2a1λ . . . rn2anλ

dr

Fubini’s theorem:∫
Bε(0)

1

r1
2λa1−1 . . . rn2λan−1

dr < ∞ for some ε > 0

iff 2λ ai − 1 < 1 iff λ < min
i

{
1

ai

}
= lct (f).
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

Measuring Singularities
Analytic approach: f is smooth at 0 then lct(f) = 1 .

Example
If f is smooth at 0 then f can be taken to be part of a system of local
coordinates for Cn at the origin, thus∫

Bε(0)

1

|f |2λ
dµ < ∞ iff λ < 1 .

lct(f) = 1
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

Measuring Singularities
Algebraic approach to the F-pure threshold

f ∈ Zp[x1, . . . , xn] where p is prime.

For e ≥ 0, let

νf (pe) := max{r ≥ 0 | f r /∈ (x1
pe , . . . , xn

pe) }.

The F-pure threshold of f is

fpt (f) := lim
e→∞

νf (pe)

pe
.

the limit exists and is contained in (0, 1] ∩Q.
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Motivation: Measures of Singularities 3 approaches 2 characteristics 2 invariants

f = x2 + y3

Example
Let f ∈ Z2[x, y] with p = 2, and f = x2 + y3.

νf (2) = max{r ≥ 0 | (x2 + y3)
r * (x, y)[2] = (x2, y2)} = 0

· · ·
νf (23) = max{r ≥ 0 | (x2 + y3)

r * (x, y)[8] = (x8, y8)} = 3 = 22 − 1

νf (2e) = max{r ≥ 0 | (x2 + y3)
r * (x2e , y2e)} = 2e−1 − 1

fpt (fp) = lim
e→∞

2e−1 − 1

2e
= 1/2
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Motivation: Measures of Singularities 2 characteristics: Log canonical threshold and F-threshold

Asymptotically F-threshold = log canonical
threshold

Fix f ∈ Z[x1, . . . , xn].  compute lct (f)

Or reduce modulo p fp ∈ Zp[x1, . . . , xn] fpt (fp)

Theorem (Hara-Yoshida 2003)

(1) For all primes p, fpt (fp) ≤ lct (f);

(2) lim
p−→∞

fpt (fp) = lct (f).

Conjecture (Mustata-Takagi-Watanabe 2005)
Does equality holds for infinitely many primes?
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Motivation: Measures of Singularities 2 characteristics: Log canonical threshold and F-threshold

f = x2 + y3

Example (Mustata-Takagi-Watanabe 2005)
Let f = x2 + y3.

f ∈ C[x1, . . . , xn]  lct (f) =
5

6

fp ∈ Fp[x1, . . . , xn]  fpt (fp) =


1/2 if p = 2
2/3 if p = 3
5/6 if p ≡ 1 mod 6
5/6− 1

6p
if p ≡ 5 mod 6

lim
p−→∞

fpt (f) = 5/6 = lct (f) .

There are infinitely many p for which fpt (fp) = lct (f) . Work of Elkies
shows that fpt (fp) 6= lct (f) for infinitely many primes .
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Motivation: Measures of Singularities 2 characteristics: Log canonical threshold and F-threshold

f = elliptic curve

Example ([Bhatt, 2013])
Let f define an elliptic curve E in P2 over Z.

f ∈ C[x1, . . . , xn]  lct (f) = 1

fp ∈ Fp[x1, . . . , xn]  E ∈ P2
Fp

 fpt (fp) =

{
1 if E is ordinary ,
1− 1

p
if E is supersingular .

There are infinitely many p for which fpt (fp) = lct (f) . Work of Elkies
shows that fpt (fp) 6= lct (f) for infinitely many primes .
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Generalized Test ideals, F-jumping numbers and F-thresholds The Frobenius endomorphism

The Frobenius endomorphism and eth-root

Let S = K[x1, . . . , xs] with charK = p (K = Zp)
and I = (f1, . . . , fr) be an ideal. Fix e ≥ 0, q = pe.

Definition

(1) Fe : S → S, defined by Fe(g) = gp
e

= gq, for g ∈ S, denotes the
eth Frobenius endomorphism .

(2) The images of S and I are denoted

Sq = {gq | g ∈ S} and I
[q]

:= Fe(I) = (f q1 , . . . , f
q
r ).

(3) One easily sees that

Be = {xu11 . . . xuss | 0 ≤ u1, . . . , us ≤ q − 1}

forms a basis for S over S q
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Generalized Test ideals, F-jumping numbers and F-thresholds The Frobenius endomorphism

The eth-root

Let S = K[x1, . . . , xs] with charK = p, I an ideal, and fix e ≥ 0 q = pe.

Definition
The eth-root ideal of I, denoted I [1/q] to be the smallest ideal J such
that I ⊆ J [q].

Remark
If we express the generators of I = (f1, . . . , fs) in terms of
Be = {xu11 . . . xuss | 0 ≤ u1, . . . , us ≤ q − 1} by

fi =
∑
µ∈Be

gqiµ µ, for some polynomial giµ, for i = 1, . . . , s ,

then,” the qth-root” of the coefficients generate I [1/q]:

I [1/q] = ( giµ | µ ∈ B , i = 1, . . . , s ) .
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Generalized Test ideals, F-jumping numbers and F-thresholds Generalized test ideals

Generalized test ideals

Let I be an ideal and e ≥ 0, q as before.
Definition Given λ ∈ R+, the generalized test ideal of I at λ is

τ (λ • I ) =
⋃
e≥0

(
Idλp

ee
)[1/pe]

=
(
Idλp

ee
)[1/pe]

for e� 0 .

Properties

It defines a non-increasing, right continuous family of ideals associated to
I , in the sense that:

∀ λ≥λ′, τ (λ • I ) ⊆ τ
(
λ′ • I

)
;

∀ λ ∃ ε > 0 : τ (λ • I ) = τ
(
λ′ • I

)
, ∀ λ′ ∈ [λ, λ+ ε) .
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Generalized Test ideals, F-jumping numbers and F-thresholds Jumping numbers and F-threshold

Jumping numbers and F-threshold

Definition
The points of discontinuity, or ”jumps”, λ ∈ R+ for which
τ (λ • I ) 6= τ (λ− δ • I ) for all δ > 0,

are called F-jumping numbers of the ideal I .
fpt (I) := min{λ ∈ R+ | τ (λ • I ) 6= S} ≡ ”first jump” .

Theorem (Blickle-Mustata-Smith 2008)
The set of jumping numbers is a discrete subset of Q .
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Generalized Test ideals, F-jumping numbers and F-thresholds Multiplier ideals

Multiplier ideal: Analytically

Definition Given f ∈ C[x1, . . . , xN ] vanishing at z ∈ CN , the log-canonical
threshold of f at z is defined as:

lct z(f) = sup{λ ∈ R+ :

∫
B

1

|f |2λ <∞, ∃ a ball z ∈ B}

Example: lct 0(xa11 · · ·xaNN ) = min
i
{1/ai}.

Definition Given an ideal I = (f1, . . . , fr) ⊆ S and λ ∈ R+, the multiplier
ideal with coefficient λ of I is defined as

J (λ • I) :=

{
g ∈ S :

|g|
(
∑r

i=1 |fi|2)λ
∈ L1

loc

}
,

where L1
loc denotes the space of locally integrable functions.
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Generalized Test ideals, F-jumping numbers and F-thresholds Multiplier ideals

Multiplier ideal: Geometrically

Definition Alternatively, given an ideal I ⊆ S = K[x1, . . . , xN ],
char(K) = 0 and λ ∈ R+, the multiplier ideal with coefficient λ of I is

J (λ • I) = π∗OX(KX/ Spec(S) − bλ · F c)
where:

(i) π : X −→ Spec(S) is a log-resolution of the sheafication Ĩ of I;
(ii) π−1

(
Ĩ
)

= OX(−F ).
(iii) KX/ Spec(S) is the relative canonical divisor.

This simply means that X is non-singular, F is an effective divisor, the
exceptional locus E of π is a divisor and F +E has simple normal crossing
support.
Log-resolutions like this, in characteristic 0, always exist by Hironaka’s
celebrated result.
The log-canonical threshold of an ideal I ⊆ S is:

lct (I) = min{λ ∈ R+ : J (λ • I) 6= S}.
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Generalized Test ideals, F-jumping numbers and F-thresholds Multiplier ideals

Multiplier ideals

Fix I = (g1, . . . , gn) ⊆ S = K[x1, . . . , xN ], char(K) = 0.
If gi ∈ Z, I ⊆ R is said to be reduced from characteristic zero to,

Ip = I ⊗Z Zp ⊆ Zp[x1, . . . , xn]

in characteristic p > 0.

In characteristic zero, the multiplier ideals of I associate to I, a right
continuous, non-decreasing family of ideals

{J (λ • I)}λ≥0 ,

where the first jumping number ”defines” the Log canonical threshold of
the ideal I, lct (I).
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Generalized Test ideals, F-jumping numbers and F-thresholds Asymptotically Generalized test ideals = Multiplier ideals

Asymptotically: Generalized test ideals = Multiplier
ideals

Theorem (Hara-Yoshida 2003)
Assume that I ⊆ S is an ideal reduced from characteristic zero to
characteristic p > 0.

(1) For all λ and all primes p, τ (λ • I ) ⊆ J (λ • I);

(2) Fixing λ, one has τ (λ • I ) = J (λ • I) for p� 0 .

Conjecture (Mustata-Takagi-Watanabe 2005)
Does equality hold (for all λ) for infinitely many primes?
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Determinantal ideals lct and fpt of a determinantal ideal

Determinantal ideals

Given 1 ≤ t ≤ m ≤ n, consider the m× n matrix of indeterminates over a
field K

X=


x11 x12 · · · · · · x1n

x21 x22 · · · · · · x2n
...

...
. . .

. . .
...

xm1 xm2 · · · · · · xmn

 .

Let I = It(Xm×n) ⊆ S = K[x11, . . . , xmn], the ideal generated by
t-minors of the X .

Theorem (Johnson 2004, Miller-Singh-Varbaro 2013)
[Johnson] If charK = 0 ,

lct (I) = min
{(n− k)(m− k)

(t− k)

∣∣∣ k = 0, . . . , t− 1
}
.

[MSV] If charK = p > 0 , fpt (I) = lct (I) for all prime p.
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Determinantal ideals Multiplier ideals of a determinantal ideal

Multiplier ideals of maximal determinantal ideals

Let It = It(Xm×n) ⊆ S = K[x11, . . . , xmn] for all 1 ≤ t ≤ m.

Theorem [Johnson, 2004]
Let charK = 0. The multiplier ideal of Im at λ, is

J (λ • Im) = Ibλc−lct (I)+1
m

for all λ ≥ lct (I) .

Theorem [Johnson, 2004]
Let charK = 0 and 1 ≤ t ≤ m. The multiplier ideal of It at λ satisfies

J (λ • It) =

m⋂
i=1

I
(bλ·(t−i+1)c+1−(m−i+1)(n−i+1))
i

for all λ ≥ lct (I) .
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Determinantal ideals Generalized test ideals of a determinantal ideal

Test ideals of arbitrary determinantal ideals

Theorem[H.]
Let R = k[x1, . . . , xmn] char k = p > 0 and I = Im(Xm×n).
For all λ ≥ fpt (I),

τ (λ • I ) = Ibλc−fpt (I)+1 = J (λ • I)⊗Z Zp

(in all prime characteristics p) .
The set of F -jumping numbers of I is fpt (I) + N .

Conjecture[H.-Varbaro]
For all 1 ≤ t ≤ m ≤ n let I = It(Xm×n) ,

τ (λ • I ) = J (λ • I)⊗Z Zp, for all λ.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Notation

Given 1 ≤ t ≤ m ≤ n, consider the m× n matrix X of indeterminates
over a field K. Let K[X] be the polinomial ring in the entries of X
and It ⊆ K[X] be the prime ideal generated by the t-minors of X.

Fix two K-vector spaces, V and W , with dimV = m and dimW = n,

and consider the group G = GL(V )×GL(W ).

Inês B. Henriques (Levico Terme) Test, multiplier and invariant ideals 24 / 39



Determinantal ideals Generalized test ideals of a determinantal ideal

The action of G on K[X]

Fixing basis for V and W , one can consider the action of G on K[X]
defined by

(A,B) ·X = AXB−1 ∀ (A,B) ∈ G = GL(V )×GL(W ).

With respect to this action, It is an invariant ideal.

In characteristic 0, De Concini, Eisenbud e Procesi [DEP] gave a
description of the invariant ideals of K[X].
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Determinantal ideals Generalized test ideals of a determinantal ideal

Young diagrams

A (Young) diagram is a vector σ = (σ1, . . . , σk) with positive integers as
entries, such that σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 1.

We write σ = (rs11 , r
s2
2 , . . .) to denote the tuple with first s1 entries equal

to r1, the following s2 entries of σ are equal to r2 and so on...

Given diagrams σ = (σ1, . . . , σk) and τ = (τ1, . . . , τh), we write σ ⊆ τ if
k ≤ h and σi ≤ τi for all i = 1, . . . , k.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Cauchy formula

Consider the natural diagonal action of G on V ⊗W ∗, the following
isomorphism is G-equivariant:

K[X] ∼= Sym(V ⊗W ∗) =
⊕
d≥0

Symd(V ⊗W ∗)

If char(K) = 0, the Cauchy formula yields a decomposition of
Sym(V ⊗W ∗) into irreducible G-modules

Sym(V ⊗W ∗) ∼=
⊕
σ

SσV ⊗ SσW ∗,

where σ is a Young diagram with σ1 ≤ m and Sσ denotes the Schur
functor.

E.g., when σ = (d), S(d)V =

d∧
V and when σ = (1d) = (1, . . . , 1)

S(1d)V = Symd V .
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Determinantal ideals Generalized test ideals of a determinantal ideal

The G-invariant ideals of Sym(V ⊗W ∗).

Therefore, the G-invariant vector spaces of Sym(V ⊗W ∗) correspond to
such sets Σ of Young diagrams:

Σ 7→
⊕
σ∈Σ

SσV ⊗ SσW ∗.

It is shown in [DEP] that such a vector space is an ideal iff:

σ ∈ Σ, τ ⊇ σ ⇒ τ ∈ Σ.

Further, the ideal Iσ generated by SσV ⊗ SσW ∗ admits the
decomposition:

Iσ =
⊕
τ⊇σ

SτV ⊗ SτW ∗

Note: The determinantal ideal It corresponds to the ideal I(t).
Given a (finite) set Σ of Young diagrams, set:

I(Σ) =
∑
σ∈Σ

Iσ.
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Determinantal ideals Generalized test ideals of a determinantal ideal

γ-functions

Thus, in charateristic 0, the G-invariant ideals of Sym(V ⊗W ∗)
correspond to finite sets Σ of Young diagrams:

Σ 7→ I(Σ).

For each i ∈ {1, . . . ,m}, define the γi function on Young diagrams by:

γi(σ) =
k∑
j=1

max{0, σj − i+ 1}, for σ = (σ1, . . . , σk).

Given a finite set of diagrams, Σ, we define the polytope PΣ ⊆ Rm as the
convex hull of {(γ1(σ), . . . , γm(σ)) : σ ∈ Σ}.

We give an explicit description of the multiplier ideals of I(Σ) in terms of
the polytope PΣ.
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Determinantal ideals Generalized test ideals of a determinantal ideal

The multiplier ideals of I(Σ) when Σ = {σ};
In this talk we focus on the description of the multiplier ideals of Iσ

In other words, we describe the multiplier ideals, and consequently the log
canonical thresholds, of Iσ for each Young diagram σ.

In the case where σ = (t), Iσ = It is a determinantal ideal,
we recover a result of [Johnson, 2003] using log-resolutions of
determinantal varieties.
Recently, [DoCampo, 2012] recovered the formula for the log-canonical
threshold of It from the study of jet schemes associated to determinantal
varieties.

Given a product of minors ∆ = δ1 · · · δk ∈ K[X], where δi is a αi-minor of
X, we define α = (α1, . . . , αk) to be the shape of ∆.

We will see that the multiplier ideals of Iσ are generated by products of
minors of prescribed shapes (described by γ-functions).
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Determinantal ideals Generalized test ideals of a determinantal ideal

Theorem [H.-Varbaro]
Given a Young diagram σ = (σ1, . . . , σk) with σ1 ≤ m, and λ ∈ R+,
J (λ • Iσ) is generated by products of minors whose shape α satisfies:

γi(α) ≥ bλγi(σ)c+ 1− (m− i+ 1)(n− i+ 1) ∀ i = 1, . . . ,m.

Equivalently,

J (λ • Iσ) =

m⋂
i=1

I
(bλγi(σ)c+1−(m−i+1)(n−i+1))
i

In particular, the log-canonical threshold of Iσ is given by

lct (Iσ) = min
i

{
(m− i+ 1)(n− i+ 1)

γi(σ)

}
.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Proof

We work towards developing a theory that gives a description of the test
ideals (hence the F -pure thresholds) of ideals with certain nice properties,
in a polynomial over a field K of positive characteristic. We recover a

description of the multiplier ideals, from a result of [Hara-Yoshida, 2003]:

the test ideals at λ
of the characteristic p reduction

=
p >> 0 characteristic p reduction

of the multiplier ideals at λ
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Determinantal ideals Generalized test ideals of a determinantal ideal

G-invariant ideals in positive characteristic

In positive characteristic, there isn’t a characterization of the G-invariant
ideals of K[X].

A priori, there isn’t an obvious way to define the ideals Iσ, in positive
characteristic.

But we still know how to handle“enough” G-invariant ideals, even in
positive characteristic, to do the job!

Given a Young diagram σ = (σ1, . . . , σk) with σ1 ≤ m, we set

Dσ = Iσ1 · · · Iσk ⊆ K[X].

Theorem[DEP] If char(K) = 0, then Iσ = Dσ.

Corollary: For each λ ∈ R+, J (λ • Iσ) = J (λ •Dσ).
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Determinantal ideals Generalized test ideals of a determinantal ideal

Test ideals

Recall/Definitions:
Let S = K[x1, . . . , xN ] be a polynomial ring over a field K,
char(K) = p > 0. Given an ideal I = (f1, . . . , fr) and q = pe, recall that:

(1)
I [q] = (f q1 , . . . , f

q
r ) ⊆ S;

(2) I [1/q] denotes the smallest (∃!) ideal J ⊆ S for which I ⊆ J [q];

(3) the test ideal of I at λ(∈ R+) is

τ(λ • I) =
⋃
e>0

(
Idλqe

)[1/q]
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Determinantal ideals Generalized test ideals of a determinantal ideal

Test ideals

Theorem[Hara-Yoshida]
Given I ⊆ P = Z[x1, . . . , xN ] and λ ∈ R+, there exists a prime p� 0
such that:

J (λ • I · P ⊗Z C) · P ⊗Z Z/pZ = τ(λ • I · P ⊗Z Z/pZ)

We computed the test ideals (hence F -pure thresholds) of every ideal of
the form Dσ (products of determinantal ideals, cf. [H.-Varbaro])

It is worth noting that these“are the same” in all characteristics.

Recall that the F -pure threshold of determinantal ideals (σ = (t)) was
known, cf. [MSV].

Inês B. Henriques (Levico Terme) Test, multiplier and invariant ideals 35 / 39



Determinantal ideals Generalized test ideals of a determinantal ideal

Big test ideals

Definition
Given an ideal I ⊆ S = K[x1, . . . , xN ] and p ∈ Spec(S), define the
function fI;p : Z>0 → Z>0 by: fI;p(s) = max{` : Is ⊆ p(`)}.

fI;p is linear, fI;p(s) = s fI;p(1), so we set:

ep(I) = fI;p(1) = max{` : I ⊆ p(`)}.

Proposition If K has positive characteristic, then:

τ(λ • I) ⊆
⋂

p∈Spec(S)

p(bλep(I)c+1−ht(p)) ∀ λ ∈ R+. (?)

Definition An ideal I ⊆ S has big test ideals if equality holds in (?), for all
λ ∈ R+.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Condition (�)
Naturally, for each s ∈ Z>0, one has:

Is ⊆
⋂

p∈Spec(S)

p(ep(I)s).

To make this inclusion optimal we introduce the following condition:

Definition: An ideal I ⊆ S satisfies condition (�) if for all p ∈ Spec(S)
there exists a function gI;p : Z>0 → Z>0 for which:

Is =
⋂

p∈Spec(S)

p(gI;p(s)) ∀ s� 0. (1)

Remark: One easily sees that, for some c ∈ N, one has

ep(I)s− c ≤ gI;p(s) ≤ ep(I)s.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Condition (�+)

A result of [Bruns] shows that, for every Young diagram σ, the ideal Dσ

satisfies condition (�). Indeed:

Ds
σ =

m⋂
i=1

I
(γi(σ)s)
i

Definition: An ideal I ⊆ S satisfies condition (�+) if it satisfies condition
(�), and there exists a term order ≺ on S and a polynomial F ∈ S such
that:

(i) in≺(F ) is a square-free monomial;

(ii) F ∈ p(ht(p)) for all p ∈
⋃

s∈Z>0

Ass

(
Is
)

.
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Determinantal ideals Generalized test ideals of a determinantal ideal

Proposition For all Young diagram σ, the ideal Dσ satisfies (�+).

Theorem[H.-Varbaro]
If I ⊆ S satisfies condition (�+), then it has big test ideals,

i.e. τ(λ • I) =
⋂

p∈Spec(S)

p(bλep(I)c+1−ht(p)) ∀ λ ∈ R+. (?)

Corollary τ(λ •Dσ) is generated by products of minors whose shape α
satisfies:

γi(α) ≥ bλγi(σ)c+ 1− (m− i+ 1)(n− i+ 1) ∀ i = 1, . . . ,m.

Equivalently,

τ(λ •Dσ) =

m⋂
i=1

I
(bλγi(σ)c+1−(m−i+1)(n−i+1))
i .

In particular, the F -pure threshold is given by:

fpt (Dσ) = min
i

{
(m− i+ 1)(n− i+ 1)

γi(σ)

}
.
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