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Outline

1. Algebraic statistics. The source of our problem in Gaussian
conditional independence models.

2. A few nice Frobenius splittings from Schubert calculus.
I Unrestricted matrices via type A.
I Symmetric matrices via type C.

3. Back to the statistics. Parametrized models.
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Conditional independence

Algebraic statistics studies models, varieties of probability
distributions, and their ideals.

A conditional independence (CI) statement has the form

XA ⊥⊥ XB | XC

“XA is independent of XB, given XC”

where XA, XB, XC refer to subsets of variables in a distribution X .

(Have we found all the ways XA and XB can interact?)

Problem
Describe the implications among collections of CI statements.

That is: when is IC1 + IC2 =
⋂

i

Ji

for IC1 , IC2 ideals of CI statements and Ji tractable models?
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The discrete setting

If X is a vector of n discrete random variables,
then models have ideals in C[x11...1, . . . , xr1r2...rn ],
where xi1...in = Prob(Xi = i1, . . . ,Xn = in).

Let D = [n] \ (A ∪ B ∪ C). The ideal of XA ⊥⊥ XB | XC is〈(∑
`∈D

xijk`

)(∑
`∈D

xi ′j ′k`

)
−

(∑
`∈D

xi ′jk`

)(∑
`∈D

xij ′k`

)
:

i , i ′ ∈
∏

a∈A[ra], j , j ′ ∈
∏

b∈B[rb], k ∈
∏

c∈C [rc]
〉
.

Primary decomposition, Gröbner bases known for cases including
I [Fink] {X1 ⊥⊥ X2 | X3,X1 ⊥⊥ X3 | X2}
I [HHHKR, Ay-Rauh] {X1 ⊥⊥ XS | X[n]\(1∪S) : various S},

including binomial edge ideals
I [Swanson-Taylor] {Xi ⊥⊥ Xj | X[n]\i,j : 1 ≤ i < j ≤ t}

(all assoc primes, but only the minimal components)
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The Gaussian setting

An n-dimensional Gaussian random variable X with mean zero
has the form X = AW , for A ∈ GLn(R) and Wi ∼ N (0,wi)
independent scalar Gaussian variables.

These distributions are characterised by their covariance matrices

Σ = AT diag(w)A

recording the covariances σij = E(XiXj).
Σ is symmetric and positive (semi)definite.

So we work with ideals in C[Σ] := C[σ11, . . . , σnn], where σij = σji .
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Gaussian CI ideals

For A,B ⊆ [n], XA ⊥⊥ XB is true when ΣAB = 0, so

IXA⊥⊥XB
= 〈σab : a ∈ A,b ∈ B〉.

Conditioning on a variable reduces Σ to its Schur complement, so

IXA⊥⊥XB |XC
is the determinantal ideal I1+#C(ΣA∪C,B∪C).

Our problem becomes

Problem
Decompose sums of determinantal ideals from submatrices of a
single symmetric matrix.
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Frobenius splittings

Recall: let K be a perfect field of char p > 0, R a K-algebra.
Then φ : R → R is a Frobenius near-splitting if

R
φ //

·ap

��

R

·a
��

R
φ

// R

commutes for a ∈ K, and a Frobenius splitting if further f (1) = 1.

An ideal I ⊆ R is compatibly split by φ if φ(I) ⊆ I,
i.e. if f descends to a splitting on R/I.

The Frobenius near-splittings of R = K[x1, . . . , xd ] form an
R-module isomorphic to R. Its generator, Tr, acts on monomials by

Tr(m) =

{
(x1 · · · xdm)1/p/x1 · · · xd if defined
0 else. [Brion-Kumar]
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A source of Frobenius splittings over Z

Say that f ∈ S = Z[x1, . . . , xd ] determines a Frobenius splitting if,
for almost all p, Tr(f p−1·) is a Frobenius splitting of Fp[x1, . . . , xd ].

I ⊆ S is compatibly split by f if it’s compatibly split by Tr(f p−1·) for
almost all p.

Theorem ([Knutson ’09])

Let f ∈ Z[x1, . . . , xd ] have degree d and initial term x1x2 · · · xd in
lex order. Then f determines a Frobenius splitting.

Let J be the smallest set of ideals containing 〈f 〉 and such that
1. If I1, I2 ∈ J , then I1 + I2, I1 ∩ I2 ∈ J and
2. If I ∈ J and J is a primary component of I then J ∈ J .

Then every ideal J ∈ J is compatibly split.
Over Q, all such J are radical and have squarefree lex-initial ideal.
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Example

In Z[x11, . . . , xnn], let ffull be the product of the determinants of
upper-right and lower-left-justified square submatrices of [xij ].

· · · · · · · · · · · · · ·

Theorem ([Knutson, Knutson-Lam-Speyer])
ffull compatibly splits

I the matrix Schubert ideals;
I further ideals, to be described below.

Nonstandard convention
Schubert cells are Ωw = B− \ B−wB−, where B− is
lower-triangular matrices.
Upper-right rank conditions determine matrix Schubert ideals.
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Matrix Schubert ideals

Given a permutation matrix w ∈ Sk , let R(w) be the k × k array

Rij = #{(i ′, j ′) : i ′ ≤ i , j ′ ≥ j ,wi ′,(n+1−j ′) = 1}.

Given a k × k array R of naturals, define IR ⊆ C[y11, . . . , ykk ] by

IR =
∑
i,j

IRij

y1j y1n
..
.

yij yin

 .

The matrix Schubert ideal Iw is IR(w).

E.g. w =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

, R(w) =


1 0 0 0
2 1 1 1
3 2 1 1
4 3 2 1

,
Iw 3 y12,∣∣∣∣y23 y24
y33 y34

∣∣∣∣, . . .
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Schubert varieties

Schubert varieties Ωw = B− \ B−wB− are, for the group SLn,
quotients of the V (Iw ) by the lower triangular matrices B− acting
on the left.

As w varies, they form the closed cells of a stratification of
B− \ SLn. The Bruhat order is

v ≤ w ⇐⇒ Ωv ⊇ Ωw .

The interiors Ω◦
w of these cells are affine spaces.

Opposite Schubert varieties are Ωw = B− \ B−wB+.
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Rank conditions on enlarged matrices

Let J be the n × n matrix with 1s on the antidiagonal and 0s off it.
Define

Full :=

{[
J xij
0 J

]
: x11, . . . , xnn ∈ C

}
,

and let Iv ,full be full(Iv ), where
full : C[y11, . . . , y2n,2n]→ C[x11, . . . , xnn] “evaluates [yij ] at Full”.

IR,full is generated by (top or left) and (bottom or right)-aligned

minors of [xij ].

Let w� =

[
0 I
I 0

]
∈ S2n.

Full can be identified with Ω
w�◦ so that intersecting with Ωv gives

V (Iv ,full) = Full ∩ V (Iv ).

This is nonempty iff v ≤ w� in Bruhat order.
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All the compatibly split prime ideals

Proposition again (mostly [Knutson-Lam-Speyer])

The prime ideals compatibly split by ffull are exactly the Iv ,full
where v ∈ [1,w�] in Bruhat order.

[Brion-Kumar] There are sheafy Frobenius splittings.
These are determined by certain divisors.

Compatibly split subvarieties of a variety with a splitting, and open
subsets thereof, have induced splittings.

The full flag variety has a splitting f , compatibly splitting exactly the
Richardson varieties Ωv ∩ Ωw , with divisor∑

(codim 1 Richardsons).

=⇒ Check that D(ffull) agrees with the splitting induced from f .
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The compatibly split ideals concretely

Proposition
The compatibly split ideals are exactly those of the form IR.

If Ri,j ≥ m := min{Ri−1,j + 1,Ri,j+1 + 1,Ri+1,j ,Ri,j−1},
then Ri,j is redundant, and replacing it with m doesn’t change IR.

Given two rank arrays R and R′,

IR + IR′ = Imin{R,R′}, IR ∩ IR′ = Imax{R,R′}.

The primary decomposition of IR is
⋂

i ISi where the Si are
obtained from R by replacing subarrays

i + 1 i
i + 1 i + 1

with
i i

i + 1 i + 1
or

i + 1 i
i + 1 i

and decreasing redundant entries until neither is possible.
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Variations

Parallel to ffull, define fup and fsym for upper-triangular and
symmetric matrices of indeterminates. Set

Up :=

{[
J xij
0 J

]
: [xij ] is upper-triangular

}
,

Sym :=

{[
J xij
0 J

]
: [xij ] is symmetric

}
,

and Iv ,up and Iv ,sym be corresponding images of Iv .

Proposition ([KLS], [FRS])
I The compatibly split primes for fup are the Iv ,up for

v ∈ [

[
I 0
0 w0

]
,w�].

I The compatibly split primes for fsym are the Iv ,sym for

v ∈ [1,w�] that commute with w0 :=

[
0 J
J 0

]
∈ S2n.
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Up and Sym as Schubert objects

Up itself equals V (Iv ,full) for v =

[
I 0
0 J

]
.

Sym is isomorphic to the type C opposite Schubert cell Ω
w�,Sp
◦ in

Sp2n(C)/B−, where the symplectic form has matrix E =

[
0 J
−J 0

]
.

Under the natural inclusion

Sp2n(C) = SL2n(C)σ i
↪→ SL2n(C)

where σ(A) = E(A−1)>E−1, Schubert varieties pull back to
Schubert varieties, and Full to Sym. [Lakshmibai-Raghavan]

So i#(Iv ,full) = Iv ,sym still defines the intersection of a Schubert
variety with Ω

w�,Sp
◦ .

The symplectic Schubert varieties are indexed by Cn ↪→ S2n
whose image is elements commuting with w0.
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Gröbner bases

The essential minors in Iv ,s (for s = full, s = sym, s = up)
are those arising from non-redundant entries of R(v).

Proposition ([Knutson], [Woo-Yong], [FRS])

In any term order selecting the diagonal terms from any minor,
the essential minors in Iv ,full or Iv ,up form a Gröbner basis.

The same is true for Iv ,sym when it doesn’t contain det(Σ).

The full and up cases are [WY] for one term order, involving pipe
dreams.
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Enumeration

Proposition
The number of compatibly split prime ideals for

I ffull is n+1∑
i=1

(
(i − 1)! S(n + 1, i)

)2

I fup is n+1∑
i=1

(i − 1)! S(n + 1, i)

where S(n, k) are Stirling numbers of the second kind,
enumerating set partitions.

I fsym is the median Genocchi number H2n:

i \ k 0 1 2 3 4 5 6
1 1 1 2 2 8 8 56
2 1 1 3 6 14 48
3 3 3 17 34
4 17 17

(Each column is the partial
sums of the previous,
directions alternating.)
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Algebraic-statistical translation

The CI statements C such that IC is compatibly split by fsym are
those that yield corner-aligned minors:

I X[1,i] ⊥⊥ X[j,n], for i < j ;
I X[1,j−1] ⊥⊥ X[i+1,n] | X[j,i], for i ≥ j .

Theorem
Any sum of the above Gaussian CI ideals is an (explicit)
intersection of prime sums of determinantal ideals.

All such sums have Gröbner bases composed of minors of Σ.
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Gaussian graphical models

Let G be a directed acyclic graph on n vertices.

The graphical model of G is the semialgebraic set

{((I − Λ)−1)> diag(w) (I − Λ)−1 : Λ ∈ Radjacency(G),w ∈ Rm
>0}

of positive definite matrices. Denote its ideal by IG.

IG corresponds to a factorization

Prob(X = x) =
∏

i

Prob(Xi = xi | Xj = xj : i → j ∈ G).

IG contains IxA⊥⊥xB |xC
iff every undirected path from A to B either

I has a vertex . . .← • → . . . with no directed path to C; or
I meets C at another kind of vertex. [Koster]

IG and
∑
IxA⊥⊥xB |xC

are equal up to saturation by 〈det(Σ)〉.
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Comparing parametrizations

Suppose w fixes n + 1, . . . ,2n, i.e. Iw ,full is a matrix Schubert
ideal.

Note that Iw ,sym 63 det(Σ).

Let Ei(t) = I + tei,i+1 be Chevalley generators for SLn.

Theorem
If w |[n] = si1 · · · sik , then

ψ : (a1, . . . ,an, t1, . . . , tk ) 7→ diag(a1, . . . ,an)Ei1(t1) · · ·Eik (tk )

parametrizes V (Iw ,up).
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Parametrizing symmetric matrix Schubert varieties

Proposition

Let s : Cn×n → Cn×n be the map s(M) = M>M. Then

V (Iw ,sym) = s(V (Iw ,up)).

In particular, V (Iw ,sym) is parametrized by s ◦ φ.

Key ingredient: Iw ,up is an initial ideal of Iw ,sym.

Also:
s is generically 1–1 on V (Iw ,up) by the Cholesky decomposition.
Iw ,sym ⊆ I(s(V (Iw ,up))) is an easy direct check.
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Generalised Markov chains

Which IG have the form Iw ,sym?

A directed acyclic graph G on the ordered set [n] is a generalized
Markov chain if for any edge i → j of G, there is also an edge
i ′ → j ′ for all i ≤ i ′ < j ′ ≤ j .

G is a generalized Markov chain for some ordering⇔ the induced
subgraph on the parents, resp. children, of any vertex is complete.

Theorem
IG is compatibly split by fsym ⇔ G is a generalized Markov chain.

⇒ sums have good primary decompositions and Gröbner bases.

Thanks!
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