Frobenius splitting of matrix Schubert ideals and Gaussian conditional independence models

Alex Fink, Jenna Rajchgot, Seth Sullivant

Queen Mary U of London, U of Michigan, North Carolina State U

MOCCA, Levico Terme 9 September 2014

- 1. Algebraic statistics. The source of our problem in Gaussian conditional independence models.
- 2. A few nice Frobenius splittings from Schubert calculus.
 - Unrestricted matrices via type A.
 - Symmetric matrices via type *C*.
- 3. Back to the statistics. Parametrized models.

Conditional independence

Algebraic statistics studies models, varieties of probability distributions, and their ideals.

A conditional independence (CI) statement has the form

 $X_A \perp \!\!\!\perp X_B \mid X_C$

" X_A is independent of X_B , given X_C "

where X_A , X_B , X_C refer to subsets of variables in a distribution X. (Have we found all the ways X_A and X_B can interact?)

Problem

Describe the implications among collections of CI statements.

That is: when is

$$\mathcal{I}_{\mathcal{C}_1} + \mathcal{I}_{\mathcal{C}_2} = \bigcap_i \mathcal{J}_i$$

for $\mathcal{I}_{\mathcal{C}_1}, \mathcal{I}_{\mathcal{C}_2}$ ideals of CI statements and \mathcal{J}_i tractable models?

Conditional independence

Algebraic statistics studies models, varieties of probability distributions, and their ideals.

A conditional independence (CI) statement has the form

 $X_A \perp \!\!\!\perp X_B \mid X_C$

" X_A is independent of X_B , given X_C "

where X_A , X_B , X_C refer to subsets of variables in a distribution X. (Have we found all the ways X_A and X_B can interact?)

Problem

Describe the implications among collections of CI statements.

That is: when is

$$\mathcal{I}_{\mathcal{C}_1} + \mathcal{I}_{\mathcal{C}_2} = \bigcap_i \mathcal{J}_i$$

for $\mathcal{I}_{\mathcal{C}_1}, \mathcal{I}_{\mathcal{C}_2}$ ideals of CI statements and \mathcal{J}_i tractable models?

The discrete setting

If X is a vector of *n* discrete random variables, then models have ideals in $\mathbb{C}[x_{11...1}, ..., x_{r_1r_2...r_n}]$, where $x_{i_1...i_n} = \operatorname{Prob}(X_i = i_1, ..., X_n = i_n)$.

Let $D = [n] \setminus (A \cup B \cup C)$. The ideal of $X_A \perp X_B \mid X_C$ is

$$\left\langle \left(\sum_{\ell \in D} x_{ijk\ell}\right) \left(\sum_{\ell \in D} x_{i'j'k\ell}\right) - \left(\sum_{\ell \in D} x_{i'jk\ell}\right) \left(\sum_{\ell \in D} x_{ij'k\ell}\right) : \\ i, i' \in \prod_{a \in A} [r_a], \ j, j' \in \prod_{b \in B} [r_b], \ k \in \prod_{c \in C} [r_c] \right\rangle.$$

Primary decomposition, Gröbner bases known for cases including

- [Fink] $\{X_1 \perp X_2 \mid X_3, X_1 \perp X_3 \mid X_2\}$
- ► [HHHKR, Ay-Rauh] { $X_1 \perp X_S \mid X_{[n] \setminus (1 \cup S)}$: various *S*}, including binomial edge ideals
- ► [Swanson-Taylor] {X_i ⊥⊥ X_j | X_{[n]\i,j} : 1 ≤ i < j ≤ t} (all assoc primes, but only the minimal components)

The discrete setting

If X is a vector of *n* discrete random variables, then models have ideals in $\mathbb{C}[x_{11...1}, \ldots, x_{r_1r_2...r_n}]$, where $x_{i_1...i_n} = \operatorname{Prob}(X_i = i_1, \ldots, X_n = i_n)$.

Let $D = [n] \setminus (A \cup B \cup C)$. The ideal of $X_A \perp \!\!\!\perp X_B \mid X_C$ is

$$\left\langle \left(\sum_{\ell \in D} x_{ijk\ell}\right) \left(\sum_{\ell \in D} x_{i'j'k\ell}\right) - \left(\sum_{\ell \in D} x_{i'jk\ell}\right) \left(\sum_{\ell \in D} x_{ij'k\ell}\right) : \\ i, i' \in \prod_{a \in A} [r_a], \ j, j' \in \prod_{b \in B} [r_b], \ k \in \prod_{c \in C} [r_c] \right\rangle.$$

Primary decomposition, Gröbner bases known for cases including

- [Fink] $\{X_1 \perp \!\!\!\perp X_2 \mid X_3, X_1 \perp \!\!\!\perp X_3 \mid X_2\}$
- ► [HHHKR, Ay-Rauh] { $X_1 \perp X_S \mid X_{[n] \setminus (1 \cup S)}$: various *S*}, including binomial edge ideals
- ► [Swanson-Taylor] { $X_i \perp X_j \mid X_{[n]\setminus i,j} : 1 \le i < j \le t$ } (all assoc primes, but only the minimal components)

An *n*-dimensional Gaussian random variable X with mean zero has the form X = AW, for $A \in GL_n(\mathbb{R})$ and $W_i \sim \mathcal{N}(0, w_i)$ independent scalar Gaussian variables.

These distributions are characterised by their covariance matrices

 $\Sigma = A^T \operatorname{diag}(w)A$

recording the covariances $\sigma_{ij} = \mathbf{E}(X_i X_j)$. Σ is symmetric and positive (semi)definite.

So we work with ideals in $\mathbb{C}[\Sigma] := \mathbb{C}[\sigma_{11}, \dots, \sigma_{nn}]$, where $\sigma_{ij} = \sigma_{ji}$.

An *n*-dimensional Gaussian random variable X with mean zero has the form X = AW, for $A \in GL_n(\mathbb{R})$ and $W_i \sim \mathcal{N}(0, w_i)$ independent scalar Gaussian variables.

These distributions are characterised by their covariance matrices

 $\Sigma = A^T \operatorname{diag}(w) A$

recording the covariances $\sigma_{ij} = \mathbf{E}(X_i X_j)$. Σ is symmetric and positive (semi)definite.

So we work with ideals in $\mathbb{C}[\Sigma] := \mathbb{C}[\sigma_{11}, \dots, \sigma_{nn}]$, where $\sigma_{ij} = \sigma_{ji}$.

For $A, B \subseteq [n]$, $X_A \perp \!\!\!\perp X_B$ is true when $\Sigma_{AB} = 0$, so

$$\mathcal{I}_{X_{A}\perp\!\!\!\perp X_{B}} = \langle \sigma_{ab} : a \in A, b \in B \rangle.$$

Conditioning on a variable reduces Σ to its Schur complement, so

$$\mathcal{I}_{X_A \perp \!\!\!\perp X_B \mid X_C}$$
 is the determinantal ideal $\mathcal{I}_{1+\#C}(\Sigma_{A \cup C, B \cup C})$.

Our problem becomes

Problem

Decompose sums of determinantal ideals from submatrices of a single symmetric matrix.

イロト イポト イヨト イヨト

Frobenius splittings

Recall: let \mathbb{K} be a perfect field of char p > 0, R a \mathbb{K} -algebra. Then $\phi : R \to R$ is a Frobenius near-splitting if

commutes for $a \in \mathbb{K}$, and a Frobenius splitting if further f(1) = 1.

An ideal $\mathcal{I} \subseteq R$ is compatibly split by ϕ if $\phi(\mathcal{I}) \subseteq \mathcal{I}$, i.e. if *f* descends to a splitting on R/\mathcal{I} .

The Frobenius near-splittings of $R = \mathbb{K}[x_1, \dots, x_d]$ form an R-module isomorphic to R. Its generator, Tr, acts on monomials by

$$\operatorname{Tr}(m) = \begin{cases} (x_1 \cdots x_d m)^{1/p} / x_1 \cdots x_d & \text{if defined} \\ 0 & \text{else. [Brion-Kumar]} \end{cases}$$

イロト 不得 トイヨト イヨト

A source of Frobenius splittings over $\ensuremath{\mathbb{Z}}$

Say that $f \in S = \mathbb{Z}[x_1, ..., x_d]$ determines a Frobenius splitting if, for almost all p, $Tr(f^{p-1} \cdot)$ is a Frobenius splitting of $\mathbb{F}_p[x_1, ..., x_d]$.

 $\mathcal{I} \subseteq S$ is compatibly split by f if it's compatibly split by $Tr(f^{p-1}\cdot)$ for almost all p.

Theorem ([Knutson '09])

Let $f \in \mathbb{Z}[x_1, \ldots, x_d]$ have degree d and initial term $x_1 x_2 \cdots x_d$ in lex order. Then f determines a Frobenius splitting.

Let ${\mathcal J}$ be the smallest set of ideals containing $\langle f \rangle$ and such that

- 1. If $I_1, I_2 \in \mathcal{J}$, then $I_1 + I_2, I_1 \cap I_2 \in \mathcal{J}$ and
- 2. If $I \in \mathcal{J}$ and J is a primary component of I then $J \in \mathcal{J}$.

Then every ideal $J \in \mathcal{J}$ is compatibly split. Over \mathbb{Q} , all such J are radical and have squarefree lex-initial ideal.

(日)

Example

In $\mathbb{Z}[x_{11}, \ldots, x_{nn}]$, let f_{full} be the product of the determinants of upper-right and lower-left-justified square submatrices of $[x_{ij}]$.

Theorem ([Knutson, Knutson-Lam-Speyer])

f_{full} compatibly splits

- the matrix Schubert ideals;
- further ideals, to be described below.

Nonstandard convention

Schubert cells are $\Omega_w = B^- \setminus B^- w B^-$, where B^- is

lower-triangular matrices.

Upper-right rank conditions determine matrix Schubert ideals.

Example

In $\mathbb{Z}[x_{11}, \ldots, x_{nn}]$, let f_{full} be the product of the determinants of upper-right and lower-left-justified square submatrices of $[x_{ij}]$.

Theorem ([Knutson, Knutson-Lam-Speyer])

f_{full} compatibly splits

- the matrix Schubert ideals;
- further ideals, to be described below.

Nonstandard convention

Schubert cells are $\Omega_w = B^- \setminus B^- w B^-$, where B^- is

lower-triangular matrices.

Upper-right rank conditions determine matrix Schubert ideals.

Given a permutation matrix $w \in S_k$, let R(w) be the $k \times k$ array

$$R_{ij} = \#\{(i',j'): i' \leq i, j' \geq j, w_{i',(n+1-j')} = 1\}.$$

Given a $k \times k$ array R of naturals, define $\mathcal{I}_R \subseteq \mathbb{C}[y_{11}, \ldots, y_{kk}]$ by

$$\mathcal{I}_{R} = \sum_{i,j} \mathcal{I}_{R_{ij}} \left(\begin{bmatrix} y_{1j} & y_{1n} \\ & \ddots & \\ & y_{ij} & & y_{in} \end{bmatrix} \right).$$

The matrix Schubert ideal \mathcal{I}_w is $\mathcal{I}_{R(w)}$.

E.g.
$$w = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
, $R(w) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 \end{bmatrix}$, $\begin{bmatrix} \mathcal{I}_w \ni \mathcal{Y}_{12}, \\ |\mathcal{Y}_{23} & \mathcal{Y}_{24} | \\ |\mathcal{Y}_{33} & \mathcal{Y}_{34} |, \cdots$

F-splitting of matrix Schuberts, Gaussian CI models 10 / 23

・ロト ・ 四ト ・ ヨト ・ ヨト

Schubert varieties $\Omega_w = B^- \setminus B^- wB^-$ are, for the group SL_n , quotients of the $V(\mathcal{I}_w)$ by the lower triangular matrices B^- acting on the left.

As *w* varies, they form the closed cells of a stratification of $B^- \setminus SL_n$. The Bruhat order is

$$v \leq w \iff \Omega_v \supseteq \Omega_w.$$

The interiors Ω°_{w} of these cells are affine spaces.

Opposite Schubert varieties are $\Omega^{w} = B^{-} \setminus B^{-}wB^{+}$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Rank conditions on enlarged matrices

Let J be the $n \times n$ matrix with 1s on the antidiagonal and 0s off it. Define

$$Full := \left\{ \begin{bmatrix} J & x_{ij} \\ 0 & J \end{bmatrix} : x_{11}, \dots, x_{nn} \in \mathbb{C} \right\},$$

and let $\mathcal{I}_{v,\text{full}}$ be full(\mathcal{I}_{v}), where $full : \mathbb{C}[y_{11}, \ldots, y_{2n,2n}] \to \mathbb{C}[x_{11}, \ldots, x_{nn}]$ "evaluates $[y_{ij}]$ at Full".

 $\mathcal{I}_{R.full}$ is generated by (top or left) and (bottom or right)-aligned minors of $[x_{ii}]$.

Let
$$w_{\Box} = \begin{bmatrix} 0 & l \\ l & 0 \end{bmatrix} \in S_{2n}$$
.

$$V(\mathcal{I}_{v,\mathrm{full}}) = Full \cap V(\mathcal{I}_{v}).$$

This is nonempty iff $v \le w_{\Box}$ in Bruhat order.

Fink, Raichoot, Sullivant

F-splitting of matrix Schuberts, Gaussian CI models 12 / 23

Rank conditions on enlarged matrices

Let J be the $n \times n$ matrix with 1s on the antidiagonal and 0s off it. Define

$$Full := \left\{ \begin{bmatrix} J & x_{ij} \\ 0 & J \end{bmatrix} : x_{11}, \dots, x_{nn} \in \mathbb{C} \right\},$$

and let $\mathcal{I}_{v,\text{full}}$ be full(\mathcal{I}_{v}), where full : $\mathbb{C}[y_{11}, \ldots, y_{2n, 2n}] \rightarrow \mathbb{C}[x_{11}, \ldots, x_{nn}]$ "evaluates $[y_{ii}]$ at Full".

 $\mathcal{I}_{R,\text{full}}$ is generated by (top or left) and (bottom or right)-aligned minors of $[x_{ii}]$.

Let
$$w_{\Box} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \in S_{2n}$$
.

Full can be identified with $\Omega_{\circ}^{W_{\Box}}$ so that intersecting with Ω_{v} gives

$$V(\mathcal{I}_{v,\mathrm{full}}) = Full \cap V(\mathcal{I}_{v}).$$

This is nonempty iff $v \le w_{\Box}$ in Bruhat order.

Proposition again (mostly [Knutson-Lam-Speyer])

The prime ideals compatibly split by f_{full} are exactly the $\mathcal{I}_{\nu,\text{full}}$ where $\nu \in [1, w_{\Box}]$ in Bruhat order.

[Brion-Kumar] There are sheafy Frobenius splittings. These are determined by certain divisors.

Compatibly split subvarieties of a variety with a splitting, and open subsets thereof, have induced splittings.

The full flag variety has a splitting *f*, compatibly splitting exactly the Richardson varieties $\Omega_{V} \cap \Omega^{W}$, with divisor \sum (codim 1 Richardsons).

 \implies Check that $D(f_{\text{full}})$ agrees with the splitting induced from *f*.

< 日 > < 同 > < 回 > < 回 > < 回 > <

The compatibly split ideals concretely

Proposition

The compatibly split ideals are exactly those of the form \mathcal{I}_R .

If $R_{i,j} \ge m := \min\{R_{i-1,j} + 1, R_{i,j+1} + 1, R_{i+1,j}, R_{i,j-1}\}$, then $R_{i,j}$ is redundant, and replacing it with *m* doesn't change \mathcal{I}_R .

Given two rank arrays R and R',

$$\mathcal{I}_{R} + \mathcal{I}_{R'} = \mathcal{I}_{\min\{R,R'\}}, \quad \mathcal{I}_{R} \cap \mathcal{I}_{R'} = \mathcal{I}_{\max\{R,R'\}}.$$

The primary decomposition of \mathcal{I}_R is $\bigcap_i \mathcal{I}_{S_i}$ where the S_i are obtained from R by replacing subarrays

$$i+1$$
 i with i $i+1$ $i+1$ or $i+1$ i
 $i+1$ $i+1$ i

and decreasing redundant entries until neither is possible.

Variations

Parallel to f_{full} , define f_{up} and f_{sym} for upper-triangular and symmetric matrices of indeterminates. Set

$$egin{aligned} & egin{aligned} & egi$$

and $\mathcal{I}_{\nu,\text{up}}$ and $\mathcal{I}_{\nu,\text{sym}}$ be corresponding images of $\mathcal{I}_{\nu}.$

Proposition ([KLS], [FRS])

- The compatibly split primes for f_{up} are the $\mathcal{I}_{v,up}$ for $v \in \begin{bmatrix} I & 0 \\ 0 & w_0 \end{bmatrix}, w_{\Box}$].
- The compatibly split primes for f_{sym} are the $\mathcal{I}_{v,sym}$ for

 $v \in [1, w_{\Box}]$ that commute with $w_0 := \begin{bmatrix} 0 & J \\ J & 0 \end{bmatrix} \in S_{2n}$.

Up and Sym as Schubert objects

$$Up$$
 itself equals $V(\mathcal{I}_{v,\mathrm{full}})$ for $v = \begin{bmatrix} I & 0 \\ 0 & J \end{bmatrix}$.

Sym is isomorphic to the type C opposite Schubert cell $\Omega_{\circ}^{w_{\Box}, \text{Sp}}$ in $\operatorname{Sp}_{2n}(\mathbb{C})/B^{-}$, where the symplectic form has matrix $E = \begin{bmatrix} 0 & J \\ -J & 0 \end{bmatrix}$

Under the natural inclusion

$$\operatorname{Sp}_{2n}(\mathbb{C}) = \operatorname{SL}_{2n}(\mathbb{C})^{\sigma} \stackrel{i}{\hookrightarrow} \operatorname{SL}_{2n}(\mathbb{C})$$

where $\sigma(A) = E(A^{-1})^{\top}E^{-1}$, Schubert varieties pull back to Schubert varieties, and *Full* to *Sym*. [Lakshmibai-Raghavan]

So $i^{\#}(\mathcal{I}_{v,\text{full}}) = \mathcal{I}_{v,\text{sym}}$ still defines the intersection of a Schubert variety with $\Omega_{o}^{\text{w}_{\Box},\text{Sp}}$.

The symplectic Schubert varieties are indexed by $C_n \hookrightarrow S_{2n}$ whose image is elements commuting with $w_{0,n}$

F-splitting of matrix Schuberts, Gaussian CI models 16 / 23

Up and Sym as Schubert objects

$$Up$$
 itself equals $V(\mathcal{I}_{v,\text{full}})$ for $v = \begin{bmatrix} I & 0 \\ 0 & J \end{bmatrix}$.

Sym is isomorphic to the type *C* opposite Schubert cell $\Omega_{\circ}^{w_{\Box}, \text{Sp}}$ in $\text{Sp}_{2n}(\mathbb{C})/B^{-}$, where the symplectic form has matrix $E = \begin{bmatrix} 0 & J \\ -J & 0 \end{bmatrix}$.

Under the natural inclusion

$$\operatorname{Sp}_{2n}(\mathbb{C}) = \operatorname{SL}_{2n}(\mathbb{C})^{\sigma} \stackrel{i}{\hookrightarrow} \operatorname{SL}_{2n}(\mathbb{C})$$

where $\sigma(A) = E(A^{-1})^{\top}E^{-1}$, Schubert varieties pull back to Schubert varieties, and *Full* to *Sym*. [Lakshmibai-Raghavan]

So $i^{\#}(\mathcal{I}_{v,\text{full}}) = \mathcal{I}_{v,\text{sym}}$ still defines the intersection of a Schubert variety with $\Omega_{o}^{w_{\Box},\text{Sp}}$.

The symplectic Schubert varieties are indexed by $C_n \hookrightarrow S_{2n}$ whose image is elements commuting with w_0 . The essential minors in $\mathcal{I}_{v,s}$ (for s = full, s = sym, s = up) are those arising from non-redundant entries of R(v).

Proposition ([Knutson], [Woo-Yong], [FRS])

In any term order selecting the diagonal terms from any minor, the essential minors in $\mathcal{I}_{v,\text{full}}$ or $\mathcal{I}_{v,\text{up}}$ form a Gröbner basis.

The same is true for $\mathcal{I}_{v,sym}$ when it doesn't contain det(Σ).

The full and up cases are [WY] for one term order, involving pipe dreams.

Enumeration

Proposition

The number of compatibly split prime ideals for

$$f_{\text{full } is} = \sum_{i=1}^{n+1} \left((i-1)! S(n+1,i) \right)^2$$
 $f_{\text{up } is} = \sum_{i=1}^{n+1} (i-1)! S(n+1,i)$

where S(n, k) are Stirling numbers of the second kind, enumerating set partitions.

▶ *f*_{sym} is the median Genocchi number *H*_{2n}:

i∖k	0	1	2	3	4	5	6
1	1	1	2	2	8	8	56
2		1	1	3	6	14	48
3				3	3	17	34
4						17	17

Fink, Rajchgot, Sullivant

(Each column is the partial sums of the previous, directions alternating.) The CI statements C such that \mathcal{I}_{C} is compatibly split by f_{sym} are those that yield corner-aligned minors:

$$\begin{array}{l} \blacktriangleright \ X_{[1,i]} \perp \ X_{[j,n]}, \ \text{for} \ i < j; \\ \blacktriangleright \ X_{[1,j-1]} \perp \ X_{[i+1,n]} \mid X_{[j,i]}, \ \text{for} \ i \ge j. \end{array}$$

Theorem

Any sum of the above Gaussian CI ideals is an (explicit) intersection of prime sums of determinantal ideals.

All such sums have Gröbner bases composed of minors of Σ .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Gaussian graphical models

Let *G* be a directed acyclic graph on *n* vertices.

The graphical model of G is the semialgebraic set

$$\{((I - \Lambda)^{-1})^{\top} \operatorname{diag}(w) (I - \Lambda)^{-1} : \Lambda \in \mathbb{R}^{\operatorname{adjacency}(G)}, w \in \mathbb{R}_{>0}^{m}\}$$

of positive definite matrices. Denote its ideal by \mathcal{I}_G .

 \mathcal{I}_{G} corresponds to a factorization

$$\operatorname{Prob}(X = x) = \prod_{i} \operatorname{Prob}(X_i = x_i \mid X_j = x_j : i \to j \in G).$$

 $\mathcal{I}_{G} \text{ contains } \mathcal{I}_{x_{A} \perp \perp x_{B} \mid x_{C}} \text{ iff every undirected path from } A \text{ to } B \text{ either}$ $\blacktriangleright \text{ has a vertex } \dots \leftarrow \bullet \rightarrow \dots \text{ with no directed path to } C; \text{ or}$ $\blacktriangleright \text{ meets } C \text{ at another kind of vertex.} \qquad [Koster]$

 \mathcal{I}_G and $\sum \mathcal{I}_{x_A \perp x_B \mid x_G}$ are equal up to saturation by $\langle \det(\Sigma) \rangle$.

Gaussian graphical models

Let G be a directed acyclic graph on n vertices.

The graphical model of G is the semialgebraic set

$$\{((I - \Lambda)^{-1})^{\top} \operatorname{diag}(w) (I - \Lambda)^{-1} : \Lambda \in \mathbb{R}^{\operatorname{adjacency}(G)}, w \in \mathbb{R}_{>0}^{m}\}$$

of positive definite matrices. Denote its ideal by \mathcal{I}_G .

 \mathcal{I}_{G} corresponds to a factorization

$$\operatorname{Prob}(X = x) = \prod_{i} \operatorname{Prob}(X_i = x_i \mid X_j = x_j : i \to j \in G).$$

 $\mathcal{I}_{G} \text{ contains } \mathcal{I}_{x_{A} \perp \!\!\! \perp x_{B} \mid \!\! x_{C}} \text{ iff every undirected path from } A \text{ to } B \text{ either}$ $\blacktriangleright \text{ has a vertex } \dots \leftarrow \bullet \rightarrow \dots \text{ with no directed path to } C; \text{ or}$ $\blacktriangleright \text{ meets } C \text{ at another kind of vertex.} \qquad [Koster]$

 \mathcal{I}_G and $\sum \mathcal{I}_{x_A \perp \!\!\!\perp x_B \mid x_C}$ are equal up to saturation by $\langle det(\Sigma) \rangle$.

Suppose *w* fixes n + 1, ..., 2n, i.e. $\mathcal{I}_{w, \text{full}}$ is a matrix Schubert ideal.

Note that $\mathcal{I}_{w,sym} \not\supseteq det(\Sigma)$.

Let $E_i(t) = I + te_{i,i+1}$ be Chevalley generators for SL_n.

Theorem

If
$$w|_{[n]} = s_{i_1} \cdots s_{i_k}$$
, then

$$\psi: (a_1, \ldots, a_n, t_1, \ldots, t_k) \mapsto \operatorname{diag}(a_1, \ldots, a_n) E_{i_1}(t_1) \cdots E_{i_k}(t_k)$$

parametrizes $V(\mathcal{I}_{w,up})$.

(日)

Proposition

Let $s : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ be the map $s(M) = M^{\top}M$. Then

$$V(\mathcal{I}_{w,sym}) = \overline{s(V(\mathcal{I}_{w,up}))}.$$

In particular, $V(\mathcal{I}_{w,sym})$ is parametrized by $s \circ \phi$.

Key ingredient: $\mathcal{I}_{w,up}$ is an initial ideal of $\mathcal{I}_{w,sym}$.

Also: *s* is generically 1–1 on $V(\mathcal{I}_{w,up})$ by the Cholesky decomposition. $\mathcal{I}_{w,sym} \subseteq \mathcal{I}(s(V(\mathcal{I}_{w,up})))$ is an easy direct check.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Which \mathcal{I}_{G} have the form $\mathcal{I}_{w,sym}$?

A directed acyclic graph *G* on the ordered set [*n*] is a generalized Markov chain if for any edge $i \rightarrow j$ of *G*, there is also an edge $i' \rightarrow j'$ for all $i \leq i' < j' \leq j$.

G is a generalized Markov chain for some ordering \Leftrightarrow the induced subgraph on the parents, resp. children, of any vertex is complete.

Theorem

 \mathcal{I}_G is compatibly split by $f_{sym} \Leftrightarrow G$ is a generalized Markov chain.

 \Rightarrow sums have good primary decompositions and Gröbner bases.

Thanks!

Which \mathcal{I}_{G} have the form $\mathcal{I}_{w,sym}$?

A directed acyclic graph *G* on the ordered set [*n*] is a generalized Markov chain if for any edge $i \rightarrow j$ of *G*, there is also an edge $i' \rightarrow j'$ for all $i \leq i' < j' \leq j$.

G is a generalized Markov chain for some ordering \Leftrightarrow the induced subgraph on the parents, resp. children, of any vertex is complete.

Theorem

 \mathcal{I}_G is compatibly split by $f_{sym} \Leftrightarrow G$ is a generalized Markov chain.

 \Rightarrow sums have good primary decompositions and Gröbner bases.

Thanks!

< 日 > < 同 > < 回 > < 回 > < 回 > <

Which \mathcal{I}_{G} have the form $\mathcal{I}_{W,sym}$?

A directed acyclic graph *G* on the ordered set [*n*] is a generalized Markov chain if for any edge $i \rightarrow j$ of *G*, there is also an edge $i' \rightarrow j'$ for all $i \leq i' < j' \leq j$.

G is a generalized Markov chain for some ordering \Leftrightarrow the induced subgraph on the parents, resp. children, of any vertex is complete.

Theorem

 \mathcal{I}_G is compatibly split by $f_{sym} \Leftrightarrow G$ is a generalized Markov chain.

 \Rightarrow sums have good primary decompositions and Gröbner bases.

Thanks!

(日)